\chi:Z → C
m
m
a
b
\chi(ab)=\chi(a)\chi(b);
\chi
\chi(a) \begin{cases} =0&if\gcd(a,m)>1\\ \ne0&if\gcd(a,m)=1. \end{cases}
\chi(a+m)=\chi(a)
\chi
m
\chi0
\chi0(a)= \begin{cases} 0&if\gcd(a,m)>1\\ 1&if\gcd(a,m)=1. \end{cases}
\phi(n)
\zetan
n=1, | |
\zeta | |
n |
\zetan\ne1,
2\ne | |
\zeta | |
n |
1,...
n-1 | |
\zeta | |
n |
\ne1.
(Z/mZ) x
m
\phi(m).
\widehat{(Z/mZ) x }
m
p,pk,
(m,n)
\gcd(m,n)
\chi(a),\chi'(a),\chir(a),
There is no standard notation for Dirichlet characters that includes the modulus. In many contexts (such as in the proof of Dirichlet's theorem) the modulus is fixed. In other contexts, such as this article, characters of different moduli appear. Where appropriate this article employs a variation of Conrey labeling (introduced by Brian Conrey and used by the LMFDB).
In this labeling characters for modulus
m
\chim,(a)
t
\chi | |
m,\ |
(a)
\chim,1(a)
m
The word "character" is used several ways in mathematics. In this section it refers to a homomorphism from a group
G
η:G → C x , η(gh)=η(g)η(h), η(g-1)=η(g)-1.
The set of characters is denoted
\widehat{G}.
η\theta(a)=η(a)\theta(a),
η0(a)=1
η-1(a)=η(a)-1
\widehat{G}
If
A
A\cong\widehat{A}
\suma\inη(a)= \begin{cases} |A|&ifη=η0\\ 0&ifη\neη0 \end{cases}
\sumη\in\widehat{A
The elements of the finite abelian group
(Z/mZ) x
[a]=\{x:x\equiva\pmodm\}
(a,m)=1.
A group character
\rho:(Z/mZ) x → C x
\chi:Z → C
\chi(a)= \begin{cases} 0&if[a]\not\in(Z/mZ) x &i.e.(a,m)>1\\ \rho([a])&if[a]\in(Z/mZ) x &i.e.(a,m)=1, \end{cases}
and conversely, a Dirichlet character mod
m
(Z/mZ) x .
Paraphrasing Davenport[10] Dirichlet characters can be regarded as a particular case of Abelian group characters. But this article follows Dirichlet in giving a direct and constructive account of them. This is partly for historical reasons, in that Dirichlet's work preceded by several decades the development of group theory, and partly for a mathematical reason, namely that the group in question has a simple and interesting structure which is obscured if one treats it as one treats the general Abelian group.
4) Since
\gcd(1,m)=1,
\chi(1)\ne0
\chi(1)\chi(1)=\chi(1 x 1)=\chi(1)
\chi(1)=1.
5) Property 3) is equivalent to
if
a\equivb\pmod{m}
\chi(a)=\chi(b).
6) Property 1) implies that, for any positive integer
n
\chi(an)=\chi(a)n.
7) Euler's theorem states that if
(a,m)=1
a\phi(m)\equiv1\pmod{m}.
\chi(a)\phi(m)=\chi(a\phi(m))=\chi(1)=1.
That is, the nonzero values of
\chi(a)
\phi(m)
\chi(a)= \begin{cases} 0&if
r&if | |
\gcd(a,m)>1\\ \zeta | |
\phi(m) |
\gcd(a,m)=1 \end{cases}
for some integer
r
\chi,\zeta,
a
8) If
\chi
\chi'
\chi\chi',
\chi\chi'(a)=\chi(a)\chi'(a)
\chi\chi'
The principal character is an identity:
\chi\chi0(a)=\chi(a)\chi0(a)= \begin{cases} 0 x 0&=\chi(a)&if\gcd(a,m)>1\\ \chi(a) x 1&=\chi(a)&if\gcd(a,m)=1. \end{cases}
9) Let
a-1
a
(Z/mZ) x
\chi(a)\chi(a-1)=\chi(aa-1)=\chi(1)=1,
\chi(a-1)=\chi(a)-1,
The complex conjugate of a root of unity is also its inverse (see here for details), so for
(a,m)=1
\overline{\chi}(a)=\chi(a)-1=\chi(a-1).
\overline\chi
Thus for all integers
a
\chi(a)\overline{\chi}(a)= \begin{cases} 0&if\gcd(a,m)>1\\ 1&if\gcd(a,m)=1 \end{cases};
\chi\overline{\chi}=\chi0
10) The multiplication and identity defined in 8) and the inversion defined in 9) turn the set of Dirichlet characters for a given modulus into a finite abelian group.
There are three different cases because the groups
(Z/mZ) x
m
If
q=pk
(Z/qZ) x
\phi(q)
q
gq
(a,q)=1
\nuq(a)
a
a\equiv
\nuq(a) | |
g | |
q |
\pmod{q},
0\le\nuq<\phi(q).
(ab,q)=1, a\equivb\pmod{q}
\nuq(a)=\nuq(b).
\nuq(a) | |
\chi(a)=\chi(g | |
q |
\nuq(a) | |
)=\chi(g | |
q) |
,
\chi
gq.
Let
\omegaq=\zeta\phi(q)
\phi(q)
\chi(gq)
\omegaq,
2, | |
\omega | |
q |
...
\phi(q) | |
\omega | |
q |
=1.
\phi(q)
q.
(r,q)=1
\chiq,r(a)
\chiq,r(a)= \begin{cases} 0&if
\nuq(r)\nuq(a) | |
\gcd(a,q)>1\\ \omega | |
q |
&if\gcd(a,q)=1. \end{cases}
Then for
(rs,q)=1
a
b
\chiq,r(a)\chiq,r(b)=\chiq,r(ab),
\chiq,r
\chiq,r(a)\chiq,s(a)=\chiq,rs(a),
\widehat{(Z/pkZ) x }\cong(Z/pkZ) x .
2 is a primitive root mod 3. (
\phi(3)=2
21\equiv2, 22\equiv20\equiv1\pmod{3},
\nu3
\begin{array}{|c|c|c|c|c|c|c|} a&1&2\\ \hline \nu3(a)&0&1\\ \end{array}
\begin{array}{|c|c|c|c|c|c|c|} &1&2\\ \hline \chi3,1&1&1\\ \chi3,2&1&-1\\ \end{array}
2 is a primitive root mod 5. (
\phi(5)=4
21\equiv2, 22\equiv4, 23\equiv3, 24\equiv20\equiv1\pmod{5},
\nu5
\begin{array}{|c|c|c|c|c|c|c|} a&1&2&3&4\\ \hline \nu5(a)&0&1&3&2\\ \end{array}
\begin{array}{|c|c|c|c|c|c|c|} &1&2&3&4\\ \hline \chi5,1&1&1&1&1\\ \chi5,2&1&i&-i&-1\\ \chi5,3&1&-i&i&-1\\ \chi5,4&1&-1&-1&1\\ \end{array}
3 is a primitive root mod 7. (
\phi(7)=6
31\equiv3, 32\equiv2, 33\equiv6, 34\equiv4, 35\equiv5, 36\equiv30\equiv1\pmod{7},
\nu7
\begin{array}{|c|c|c|c|c|c|c|} a&1&2&3&4&5&6\\ \hline \nu7(a)&0&2&1&4&5&3\\ \end{array}
\omega=\zeta6, \omega3=-1
\begin{array}{|c|c|c|c|c|c|c|} &1&2&3&4&5&6\\ \hline \chi7,1&1&1&1&1&1&1\\ \chi7,2&1&-\omega&\omega2&\omega2&-\omega&1\\ \chi7,3&1&\omega2&\omega&-\omega&-\omega2&-1\\ \chi7,4&1&\omega2&-\omega&-\omega&\omega2&1\\ \chi7,5&1&-\omega&-\omega2&\omega2&\omega&-1\\ \chi7,6&1&1&-1&1&-1&-1\\ \end{array}
2 is a primitive root mod 9. (
\phi(9)=6
21\equiv2, 22\equiv4, 23\equiv8, 24\equiv7, 25\equiv5, 26\equiv20\equiv1\pmod{9},
\nu9
\begin{array}{|c|c|c|c|c|c|c|} a&1&2&4&5&7&8\\ \hline \nu9(a)&0&1&2&5&4&3\\ \end{array}
\omega=\zeta6, \omega3=-1
\begin{array}{|c|c|c|c|c|c|c|} &1&2&4&5&7&8\\ \hline \chi9,1&1&1&1&1&1&1\\ \chi9,2&1&\omega&\omega2&-\omega2&-\omega&-1\\ \chi9,4&1&\omega2&-\omega&-\omega&\omega2&1\\ \chi9,5&1&-\omega2&-\omega&\omega&\omega2&-1\\ \chi9,7&1&-\omega&\omega2&\omega2&-\omega&1\\ \chi9,8&1&-1&1&-1&1&-1\\ \end{array}
(Z/2Z) x
(Z/4Z) x
\equiv1\pmod{4}
\equiv3\pmod{4}.
51\equiv5, 52\equiv50\equiv1\pmod{8}
51\equiv5, 52\equiv9, 53\equiv13, 54\equiv50\equiv1\pmod{16}
51\equiv5, 52\equiv25, 53\equiv29, 54\equiv17, 55\equiv21, 56\equiv9, 57\equiv13, 58\equiv50\equiv1\pmod{32}.
q=2k, k\ge3
(Z/qZ) x
\phi(q) | |
2 |
a
\nu0
\nuq
\nu0(a) | |
a\equiv(-1) |
\nuq(a) | |
5 |
\pmod{q},
0\le\nu0<2, 0\le\nu
|
.
a
b, a\equivb\pmod{q}
\nu0(a)=\nu0(b)
\nuq(a)=\nuq(b).
a
\chi(a)
\chi(-1)
\chi(5).
Let
\omegaq=
\zeta | ||||
|
\phi(q) | |
2 |
\nu0(a) | |
\chi((-1) |
\nuq(a) | |
5 |
)
\pm\omegaq,
2, | |
\pm\omega | |
q |
...
| ||||
\pm\omega | ||||
q |
=\pm1.
\phi(q)
q.
r
\chiq,r(a)
\chiq,r(a)= \begin{cases} 0&if
\nu0(r)\nu0(a) | |
aiseven\\ (-1) |
\nuq(r)\nuq(a) | |
\omega | |
q |
&ifaisodd. \end{cases}
r
s
a
b
\chiq,r(a)\chiq,r(b)=\chiq,r(ab)
\chiq,r
\chiq,r(a)\chiq,s(a)=\chiq,rs(a)
\widehat{(Z/2kZ) x }\cong(Z/2kZ) x .
The only character mod 2 is the principal character
\chi2,1
−1 is a primitive root mod 4 (
\phi(4)=2
\begin{array}{|||} a&1&3\\ \hline \nu0(a)&0&1\\ \end{array}
The nonzero values of the characters mod 4 are
\begin{array}{|c|c|c|c|c|c|c|} &1&3\\ \hline \chi4,1&1&1\\ \chi4,3&1&-1\\ \end{array}
−1 is and 5 generate the units mod 8 (
\phi(8)=4
\begin{array}{|||} a&1&3&5&7\\ \hline \nu0(a)&0&1&0&1\\ \nu8(a)&0&1&1&0\\ \end{array}
The nonzero values of the characters mod 8 are
\begin{array}{|c|c|c|c|c|c|c|} &1&3&5&7\\ \hline \chi8,1&1&1&1&1\\ \chi8,3&1&1&-1&-1\\ \chi8,5&1&-1&-1&1\\ \chi8,7&1&-1&1&-1\\ \end{array}
−1 and 5 generate the units mod 16 (
\phi(16)=8
\begin{array}{|||} a&1&3&5&7&9&11&13&15\\ \hline \nu0(a)&0&1&0&1&0&1&0&1\\ \nu16(a)&0&3&1&2&2&1&3&0\\ \end{array}
The nonzero values of the characters mod 16 are
\begin{array}{|||} &1&3&5&7&9&11&13&15\\ \hline \chi16,1&1&1&1&1&1&1&1&1\\ \chi16,3&1&-i&-i&1&-1&i&i&-1\\ \chi16,5&1&-i&i&-1&-1&i&-i&1\\ \chi16,7&1&1&-1&-1&1&1&-1&-1\\ \chi16,9&1&-1&-1&1&1&-1&-1&1\\ \chi16,11&1&i&i&1&-1&-i&-i&-1\\ \chi16,13&1&i&-i&-1&-1&-i&i&1\\ \chi16,15&1&-1&1&-1&1&-1&1&-1\\ \end{array}
Let
m1 | |
m=p | |
1 |
m2 | |
p | |
2 |
…
mk | |
p | |
k |
=q1q2 … qk
p1<p2<...<pk
m
m
qi
(Z/mZ) x
x | |
\cong(Z/q | |
1Z) |
x | |
x (Z/q | |
2Z) |
x ...
x | |
x (Z/q | |
kZ) |
.
a\in(Z/mZ) x
k
(a1,a2,...,ak)
ai\in(Z/q
x | |
iZ) |
m
k
ab\equivc\pmod{m}
(a1,a2,...,ak) x (b1,b2,...,bk)=(c1,c2,...,ck)
ci\equivaibi\pmod{qi}.
The Chinese remainder theorem (CRT) implies that the
ai
ai\equiva\pmod{qi}.
There are subgroups
x | |
G | |
i<(Z/mZ) |
Gi\cong(Z/q
x | |
iZ) |
Gi\equiv \begin{cases} (Z/q
x | |
iZ) |
&\modqi\\ \{1\}&\modqj,j\nei. \end{cases}
Then
(Z/mZ) x \congG1 x G2 x ... x Gk
a\in(Z/mZ) x
k
(a1,a2,...ak)
ai\inGi
ai\equiva\pmod{qi}.
a\in(Z/mZ) x
a=a1a2...ak.
If
\chi | |
m,\ |
m,
Gi
\chi | |
qi,\ |
qi
\chi | |
m,\ |
(a)=\chi | |
m,\ |
(a1a2...)=\chi
m,\ |
(a1)\chi
m,\ |
(a2)...=\chi
q1,\ |
(a1)\chi
q2,\ |
(a2)...,
m
qi
For
(t,m)=1
\chim,t
=\chi | |
q1,t |
\chi | |
q2,t |
...
(rs,m)=1
a
b
\chim,r(a)\chim,r(b)=\chim,r(ab),
\chim,r
\chim,r(a)\chim,s(a)=\chim,rs(a),
\widehat{(Z/mZ) x }\cong(Z/mZ) x .
(Z/15Z) x \cong(Z/3Z) x x (Z/5Z) x .
The factorization of the characters mod 15 is
\begin{array}{|c|c|c|c|c|c|c|} &\chi5,1&\chi5,2&\chi5,3&\chi5,4\\ \hline \chi3,1&\chi15,1&\chi15,7&\chi15,13&\chi15,4\\ \chi3,2&\chi15,11&\chi15,2&\chi15,8&\chi15,14\\ \end{array}
\begin{array}{|||} &1&2&4&7&8&11&13&14\\ \hline \chi15,1&1&1&1&1&1&1&1&1\\ \chi15,2&1&-i&-1&i&i&-1&-i&1\\ \chi15,4&1&-1&1&-1&-1&1&-1&1\\ \chi15,7&1&i&-1&i&-i&1&-i&-1\\ \chi15,8&1&i&-1&-i&-i&-1&i&1\\ \chi15,11&1&-1&1&1&-1&-1&1&-1\\ \chi15,13&1&-i&-1&-i&i&1&i&-1\\ \chi15,14&1&1&1&-1&1&-1&-1&-1\\ \end{array}
(Z/24Z) x \cong(Z/8Z) x x (Z/3Z) x .
\begin{array}{|c|c|c|c|c|c|c|} &\chi8,1&\chi8,3&\chi8,5&\chi8,7\\ \hline \chi3,1&\chi24,1&\chi24,19&\chi24,13&\chi24,7\\ \chi3,2&\chi24,17&\chi24,11&\chi24,5&\chi24,23\\ \end{array}
The nonzero values of the characters mod 24 are
\begin{array}{|||} &1&5&7&11&13&17&19&23\\ \hline \chi24,1&1&1&1&1&1&1&1&1\\ \chi24,5&1&1&1&1&-1&-1&-1&-1\\ \chi24,7&1&1&-1&-1&1&1&-1&-1\\ \chi24,11&1&1&-1&-1&-1&-1&1&1\\ \chi24,13&1&-1&1&-1&-1&1&-1&1\\ \chi24,17&1&-1&1&-1&1&-1&1&-1\\ \chi24,19&1&-1&-1&1&-1&1&1&-1\\ \chi24,23&1&-1&-1&1&1&-1&-1&1\\ \end{array}
(Z/40Z) x \cong(Z/8Z) x x (Z/5Z) x .
\begin{array}{|c|c|c|c|c|c|c|} &\chi8,1&\chi8,3&\chi8,5&\chi8,7\\ \hline \chi5,1&\chi40,1&\chi40,11&\chi40,21&\chi40,31\\ \chi5,2&\chi40,17&\chi40,27&\chi40,37&\chi40,7\\ \chi5,3&\chi40,33&\chi40,3&\chi40,13&\chi40,23\\ \chi5,4&\chi40,9&\chi40,19&\chi40,29&\chi40,39\\ \end{array}
The nonzero values of the characters mod 40 are
\begin{array}{|||} &1&3&7&9&11&13&17&19&21&23&27&29&31&33&37&39\\ \hline \chi40,1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1\\ \chi40,3&1&i&i&-1&1&-i&-i&-1&-1&-i&-i&1&-1&i&i&1\\ \chi40,7&1&i&-i&-1&-1&-i&i&1&1&i&-i&-1&-1&-i&i&1\\ \chi40,9&1&-1&-1&1&1&-1&-1&1&1&-1&-1&1&1&-1&-1&1\\ \chi40,11&1&1&-1&1&1&-1&1&1&-1&-1&1&-1&-1&1&-1&-1\\ \chi40,13&1&-i&-i&-1&-1&-i&-i&1&-1&i&i&1&1&i&i&-1\\ \chi40,17&1&-i&i&-1&1&-i&i&-1&1&-i&i&-1&1&-i&i&-1\\ \chi40,19&1&-1&1&1&1&1&-1&1&-1&1&-1&-1&-1&-1&1&-1\\ \chi40,21&1&-1&1&1&-1&-1&1&-1&-1&1&-1&-1&1&1&-1&1\\ \chi40,23&1&-i&i&-1&-1&i&-i&1&1&-i&i&-1&-1&i&-i&1\\ \chi40,27&1&-i&-i&-1&1&i&i&-1&-1&i&i&1&-1&-i&-i&1\\ \chi40,29&1&1&-1&1&-1&1&-1&-1&-1&-1&1&-1&1&-1&1&1\\ \chi40,31&1&-1&-1&1&-1&1&1&-1&1&-1&-1&1&-1&1&1&-1\\ \chi40,33&1&i&-i&-1&1&i&-i&-1&1&i&-i&-1&1&i&-i&-1\\ \chi40,37&1&i&i&-1&-1&i&i&1&-1&-i&-i&1&1&-i&-i&-1\\ \chi40,39&1&1&1&1&-1&-1&-1&-1&1&1&1&1&-1&-1&-1&-1\\ \end{array}
Let
k1 | |
m=p | |
1 |
k2 | |
p | |
2 |
… =q1q2 …
p1<p2<...
m
(rs,m)=1.
There are
\phi(m)
m.
\chim,r,
\chim,r=\chim,s
r\equivs\pmod{m}.
\chim,r(a)\chim,s(a)=\chim,rs(a)
\widehat{(Z/mZ) x }\cong(Z/mZ) x .
Each character mod
m
m
\chim,r
=\chi | |
q1,r |
\chi | |
q2,r |
...
If
m=m1m2,(m1,m2)=1
\chi | |
m1,r |
\chi | |
m2,s |
\chim,t
t
t\equivr\pmod{m1}
t\equivs\pmod{m2}.
\chim,r(s)=\chim,s(r)
The two orthogonality relations are[25]
\sum | |
a\in(Z/mZ) x |
\chi(a)= \begin{cases} \phi(m)&if \chi=\chi0\\ 0&if \chi\ne\chi0 \end{cases}
\sum | |
\chi\in\widehat{(Z/mZ) x |
The relations can be written in the symmetric form
\sum | |
a\in(Z/mZ) x |
\chim,r(a)= \begin{cases} \phi(m)&if r\equiv1\\ 0&if r\not\equiv1 \end{cases}
\sum | |
r\in(Z/mZ) x |
\chim,r(a)= \begin{cases} \phi(m)&if a\equiv1\\ 0&if a\not\equiv1. \end{cases}
The first relation is easy to prove: If
\chi=\chi0
\phi(m)
\chi\ne\chi0
a*, (a*,m)=1, \chi(a*)\ne1.
*)\sum | |
\chi(a | |
a\in(Z/mZ) x |
\chi(a)=\suma\chi(a*)\chi(a)=\suma
*a)=\sum | |
\chi(a | |
a |
\chi(a),
*)-1)\sum | |
(\chi(a | |
a |
\chi(a)=0.
\suma\chi(a)=0,
\chim,r(s)=\chim,s(r)
(rs,m)=1
The second relation can be proven directly in the same way, but requires a lemma[28]
Given
a\not\equiv1\pmod{m}, (a,m)=1,
\chi*, \chi*(a)\ne1.
The second relation has an important corollary: if
(a,m)=1,
f | ||||
|
\sum\chi\bar{\chi}(a)\chi(n).
fa(n) =
1 | |
\phi(m) |
\sum\chi\chi(a-1)\chi(n) =
1 | |
\phi(m) |
\sum\chi\chi(a-1n) =\begin{cases}1,&n\equiva\pmod{m}\ 0,&n\not\equiva\pmod{m},\end{cases}
fa=1[a]
[a]=\{x: x\equiva\pmod{m}\}
Any character mod a prime power is also a character mod every larger power. For example, mod 16[31]
\begin{array}{|||} &1&3&5&7&9&11&13&15\\ \hline \chi16,3&1&-i&-i&1&-1&i&i&-1\\ \chi16,9&1&-1&-1&1&1&-1&-1&1\\ \chi16,15&1&-1&1&-1&1&-1&1&-1\\ \end{array}
\chi16,3
\chi16,9
\chi16,15
\chi16,9=\chi8,5
\chi16,15=\chi8,7=\chi4,3.
We say that a character
\chi
q
d
\chi(m)=\chi(n)
m
n
q
m\equivn
d
\chi2,1
2
1
1
2
\chi
\chi
\chi2,1
1
The conductor of
\chi16,3
\chi16,9
\chi16,15
\chi8,7
\chi16,9
\chi8,5
\chi16,15
\chi8,7
\chi4,3
A related phenomenon can happen with a character mod the product of primes; its nonzero values may be periodic with a smaller period.
For example, mod 15,
\begin{array}{|||} &1&2&3&4&5&6&7&8&9&10&11&12&13&14&15\\ \hline \chi15,8&1&i&0&-1&0&0&-i&-i&0&0&-1&0&i&1&0\\ \chi15,11&1&-1&0&1&0&0&1&-1&0&0&-1&0&1&-1&0\\ \chi15,13&1&-i&0&-1&0&0&-i&i&0&0&1&0&i&-1&0\\ \end{array}
The nonzero values of
\chi15,8
\chi15,11
\chi15,13
\begin{array}{|||} &1&2&3&4&5&6&7&8&9&10&11&12&13&14&15\\ \hline \chi15,11&1&-1&0&1&0&0&1&-1&0&0&-1&0&1&-1&0\\ \chi3,2&1&-1&0&1&-1&0&1&-1&0&1&-1&0&1&-1&0\\ \hline \chi15,13&1&-i&0&-1&0&0&-i&i&0&0&1&0&i&-1&0\\ \chi5,3&1&-i&i&-1&0&1&-i&i&-1&0&1&-i&i&-1&0\\ \end{array}
If a character mod
m=qr, (q,r)=1, q>1, r>1
\chi | |
m,\ |
(a)= \begin{cases} 0&if\gcd(a,m)>1\\ \chi | |
q,\ |
(a)&if\gcd(a,m)=1 \end{cases}
\chi | |
m,\ |
=
\chi | |
q,\ |
\chir,1,
q
q
The smallest period of the nonzero values is the conductor of the character. For example, the conductor of
\chi15,8
\chi15,11
\chi15,13
As in the prime-power case, if the conductor equals the modulus the character is primitive, otherwise imprimitive. If imprimitive it is induced from the character with the smaller modulus. For example,
\chi15,11
\chi3,2
\chi15,13
\chi5,3
The principal character is not primitive.[34]
The character
\chim,r
=\chi | |
q1,r |
\chi | |
q2,r |
...
Primitive characters often simplify (or make possible) formulas in the theories of L-functions[36] and modular forms.
\chi(a)
\chi(-1)=1
\chi(-1)=-1.
This distinction appears in the functional equation of the Dirichlet L-function.
\widehat{(Z/mZ) x }
n
\chin=\chi0.
\widehat{(Z/mZ) x }\cong(Z/mZ) x
\chim,r
r
(Z/mZ) x .
\widehat{(Z/mZ) x }
\phi(m)
\chi(a)
0, \pm1
\chi
2=\chi | |
\chi | |
0 |
\chim,k
k2\equiv1\pmod{m}
\chim,-1
Dirichlet's original proof that
L(1,\chi)\ne0
\chi
Real characters are Kronecker symbols;[40] for example, the principal character can be written[41]
\chim,1=\left(
m2 | |
\bullet |
\right)
The real characters in the examples are:
If
k1 | |
m=p | |
1 |
k2 | |
p | |
2 |
..., p1<p2< ...
\chim,1=\left(
| |||||||
\bullet |
\right).
\chi16,1=\chi8,1=\chi4,1=\chi2,1=\left(
4 | |
\bullet |
\right)
\chi9,1=\chi3,1=\left(
9 | |
\bullet |
\right)
\chi5,1=\left(
25 | |
\bullet |
\right)
\chi7,1=\left(
49 | |
\bullet |
\right)
\chi15,1=\left(
225 | |
\bullet |
\right)
\chi24,1=\left(
36 | |
\bullet |
\right)
\chi40,1=\left(
100 | |
\bullet |
\right)
If the modulus is the absolute value of a fundamental discriminant there is a real primitive character (there are two if the modulus is a multiple of 8); otherwise if there are any primitive characters they are imaginary.[43]
\chi3,2=\left(
-3 | |
\bullet |
\right)
\chi4,3=\left(
-4 | |
\bullet |
\right)
\chi5,4=\left(
5 | |
\bullet |
\right)
\chi7,6=\left(
-7 | |
\bullet |
\right)
\chi8,3=\left(
-8 | |
\bullet |
\right)
\chi8,5=\left(
8 | |
\bullet |
\right)
\chi15,14=\left(
-15 | |
\bullet |
\right)
\chi24,5=\left(
-24 | |
\bullet |
\right)
\chi24,11=\left(
24 | |
\bullet |
\right)
\chi40,19=\left(
-40 | |
\bullet |
\right)
\chi40,29=\left(
40 | |
\bullet |
\right)
\chi8,7=\chi4,3=\left(
-4 | |
\bullet |
\right)
\chi9,8=\chi3,2=\left(
-3 | |
\bullet |
\right)
\chi15,4=\chi5,4\chi3,1=\left(
45 | |
\bullet |
\right)
\chi15,11=\chi3,2\chi5,1=\left(
-75 | |
\bullet |
\right)
\chi16,7=\chi8,3=\left(
-8 | |
\bullet |
\right)
\chi16,9=\chi8,5=\left(
8 | |
\bullet |
\right)
\chi16,15=\chi4,3=\left(
-4 | |
\bullet |
\right)
\chi24,7=\chi8,7\chi3,1=\chi4,3\chi3,1=\left(
-36 | |
\bullet |
\right)
\chi24,13=\chi8,5\chi3,1=\left(
72 | |
\bullet |
\right)
\chi24,17=\chi3,2\chi8,1=\left(
-12 | |
\bullet |
\right)
\chi24,19=\chi8,3\chi3,1=\left(
-72 | |
\bullet |
\right)
\chi24,23=\chi8,7\chi3,2=\chi4,3\chi3,2=\left(
12 | |
\bullet |
\right)
\chi40,9=\chi5,4\chi8,1=\left(
20 | |
\bullet |
\right)
\chi40,11=\chi8,3\chi5,1=\left(
-200 | |
\bullet |
\right)
\chi40,21=\chi8,5\chi5,1=\left(
200 | |
\bullet |
\right)
\chi40,31=\chi8,7\chi5,1=\chi4,3\chi5,1=\left(
-100 | |
\bullet |
\right)
\chi40,39=\chi8,7\chi5,4=\chi4,3\chi5,4=\left(
-20 | |
\bullet |
\right)
See main article: Dirichlet L-function.
The Dirichlet L-series for a character
\chi
L(s,\chi)=
infty | |
\sum | |
n=1 |
\chi(n) | |
ns |
.
This series only converges for
ak{R}s>1
Dirichlet introduced the
L
See main article: Modular form. Dirichlet characters appear several places in the theory of modular forms and functions. A typical example is[44]
Let
\chi\in\widehat{(Z/MZ) x }
x } | |
\chi | |
1\in\widehat{(Z/NZ) |
If
f(z)=\sumanzn\inMk(M,\chi)
f | |
\chi1 |
(z)=\sum\chi1(n)a
n | |
nz |
f | |
\chi1 |
(z)\in
2) | |
M | |
1 |
f
f | |
\chi1 |
.
See main article: Gauss sum.
The Gauss sum of a Dirichlet character modulo is
N\chi(a)e | |
G(\chi)=\sum | |
a=1 |
| ||||
.
See main article: Jacobi sum.
If
\chi
\psi
p
J(\chi,\psi)=
p-1 | |
\sum | |
a=2 |
\chi(a)\psi(1-a).
See main article: Kloosterman sum.
If
\chi
q
\zeta=
| ||||
e |
K(a,b,\chi)
K(a,b,\chi)=\sum | |
r\in(Z/qZ) x |
| ||||
\chi(r)\zeta |
.
If
b=0
It is not necessary to establish the defining properties 1) – 3) to show that a function is a Dirichlet character.
If
\Chi:Z → C
1)
\Chi(ab)=\Chi(a)\Chi(b),
2)
\Chi(a+m)=\Chi(a)
3) If
\gcd(a,m)>1
\Chi(a)=0
4)
\Chi(a)
\Chi(a)
\phi(m)
m
A Dirichlet character is a completely multiplicative function
f:N → C
a1f(n+b1)+ … +akf(n+bk)=0
for all positive integer
n
a1,\ldots,ak
b1,\ldots,bk
f
A Dirichlet character is a completely multiplicative function
f:N → C
f
f
\alpha\inC
\left|\sumnf(n)-\alphax\right|
is uniformly bounded, as
x → infty
(rs,m)=1
\gcd(r,m)=\gcd(s,m)=1
m
n
\operatorname{lcm}(m,n)
p
p2
p
Gi,
a\in
x | |
(Z/q | |
iZ) |
ai\in(Z/mZ) x
ai\equiv\begin{cases} a&\modqi\\ 1&\modqj,j\nei. \end{cases}
a
(a1,a2,...)
a1
(a1,1,1,...)
a2
(1,a2,1,...)
(a1,a2,...).
m=40,q1=8,q2=5.
G1=\{1,11,21,31\}
G2=\{1,9,17,33\}.
(Z/40Z) x
\begin{array}{|c|c|c|c|c|c|c|} &1&9&17&33\\ \hline 1&1&9&17&33\\ 11&11&19&27&3\\ 21&21&29&37&13\\ 31&31&39&7&23\\ \end{array}
A\cong\hat{A}
\chi
r
s
\chi0
g:(Z/mZ) x → C
g(n)=\sum | |
a\in(Z/mZ) x |
g(a)fa(n)
\chi1,1.
m
m=2r
m
\chi | |
m,\ |
=\chi | |
r,\ |
\chi2,1
L(s,\chi)
\chi
p \chip,-1
\chip,-1(a)=\left(
a | |
p |
\right).
\nu | ||||
|
\nup(-1) | |
, \omega |
=-1, \nup(a)
\chim,1=\left(
m2 | |
\bullet |
\right)
\chim,1(a)=\left(
m2 | |
a |
\right)
\gcd(m,\bullet)>1
f(z)\inMk(M,\chi)
1)
f( | az+b |
cz+d |
)(cz+d)-k=f(z)
ad-bc=1
a\equivd\equiv1, c\equiv0\pmod{M}.
f( | az+b |
cz+d |
)(cz+d)-k=\chi(d)f(z)
ad-bc=1
c\equiv0\pmod{M}.
f
\chi1