In the mathematical theory of decisions, decision-theoretic rough sets (DTRS) is a probabilistic extension of rough set classification. First created in 1990 by Dr. Yiyu Yao,[1] the extension makes use of loss functions to derive
style\alpha
style\beta
The following contains the basic principles of decision-theoretic rough sets.
Using the Bayesian decision procedure, the decision-theoretic rough set (DTRS) approach allows for minimum-risk decision making based on observed evidence. Let
styleA=\{a1,\ldots,am\}
stylem
style\Omega=\{w1,\ldots,ws\}
s
styleP(wj\mid[x])
stylex
stylewj
style[x]
styleλ(ai\midwj)
styleai
stylewj
styleai
R(ai\mid[x])=
s | |
\sum | |
j=1 |
λ(ai\midwj)P(wj\mid[x]).
Object classification with the approximation operators can be fitted into the Bayesian decision framework. Theset of actions is given by
styleA=\{aP,aN,aB\}
styleaP
styleaN
styleaB
styleA
styleA
styleA
styleA
styleA
style\Omega=\{A,Ac\}
styleλ(a\diamond\midA)
stylea\diamond
styleA
styleλ(a\diamond\midAc)
styleAc
Let
styleλPP
styleA
styleλBP
styleA
styleλNP
styleA
styleλ\diamond
styleA
style\diamond
Taking individual can be associated with the expected loss
styleR(a\diamond\mid[x])
styleR(aP\mid[x])=λPPP(A\mid[x])+λPNP(Ac\mid[x]),
styleR(aN\mid[x])=λNPP(A\mid[x])+λNNP(Ac\mid[x]),
styleR(aB\mid[x])=λBPP(A\mid[x])+λBNP(Ac\mid[x]),
where
styleλ\diamond=λ(a\diamond\midA)
styleλ\diamond=λ(a\diamond\midAc)
style\diamond=P
styleN
styleB
If we consider the loss functions
styleλPP\leqλBP<λNP
styleλNN\leqλBN<λPN
styleP(A\mid[x])\geq\gamma
styleP(A\mid[x])\geq\alpha
styleA
styleP(A\mid[x])\leq\beta
styleP(A\mid[x])\leq\gamma
styleA
style\beta\leqP(A\mid[x])\leq\alpha
styleA
where,
\alpha=
λPN-λBN | |
(λBP-λBN)-(λPP-λPN) |
,
\gamma=
λPN-λNN | |
(λNP-λNN)-(λPP-λPN) |
,
\beta=
λBN-λNN | |
(λNP-λNN)-(λBP-λBN) |
.
The
style\alpha
style\beta
style\gamma
style\alpha>\beta
style\alpha>\gamma>\beta
styleP(A\mid[x])\geq\alpha
styleA
styleP(A\mid[x])\leq\beta
styleA
style\beta<P(A\mid[x])<\alpha
styleA
When
style\alpha=\beta=\gamma
style\alpha
styleP(A\mid[x])>\alpha
styleA
styleP(A\mid[x])<\alpha
styleA
styleP(A\mid[x])=\alpha
styleA
Data mining, feature selection, information retrieval, and classifications are just some of the applications in which the DTRS approach has been successfully used.