David L. Andrews Explained
David Leslie Andrews,, (born 15 October 1952) is a British scientist appointed as Professor of Chemical Physics at the University of East Anglia, where he was the Head of Chemical Sciences and Physics, from 1996 to 1999.[1]
Andrews and his research group are known for wide-ranging theory work on optical phenomena, developing quantum electrodynamical theory[2] [3] [4] [5] and symmetry principles[6] [7] [8] for numerous applications including fluorescence,[9] [10] [11] [12] and optical nanomanipulation.[13] [14] [15] [16] [17] Andrews is also known for pioneering work on the quantum theory of intermolecular energy transfer,[18] [19] [20] [21] in which he developed the unified theory of energy transfer that accommodates both radiationless and radiative processes.[22] [23] [24] [25] He has also made other notable contributions to quantum optics and nonlinear optics,[26] [27] [28] with many studies of chiral interactions including a prediction of the hyper–Rayleigh scattering effect,[29] while studies of chirality and optical helicity[30] [31] [32] led to his research group's many contributions to the theory of optical vortices.[33] [34] [35] [36] [37] [38]
Andrews is the author of over four hundred scientific papers and technical books. He has been instrumental in launching several international conference series, including a series of International Conferences on Optical Angular Momentum. Many others are conferences run by SPIE – the global society for optics and photonics, of which he is a Fellow member and 2021 President. He is also a Fellow of the Royal Society of Chemistry, the Institute of Physics, and the Optical Society of America. In his spare time he is an active member of his local church, he paints landscapes, and he writes occasional poetry.
Education
David Andrews attended Colfe's Grammar School, Lee, London, U.K. from 1963 to 1970. He graduated (1st Class Hons) in Chemistry, from University College London in 1973. He then obtained a PhD in theoretical chemistry from the same university, in 1976.
Research
From 1976 to 1978, Andrews was an Associate Research Assistant in the Department of Mathematics and Honorary Research Associate in Department of Chemistry, in University College London. In 1978, he became Science Research Council Postdoctoral Fellow and in 1979 he joined the University of East Anglia as a Lecturer. Andrews was promoted to Senior Lecturer in 1991 and to Reader in 1994. He was appointed Professor of Chemical Physics in 1996 and became Emeritus Professor in 2023.[39]
Awards and recognition
Works
- Book: Andrews. D.L.. 1986. Lasers in Chemistry. Berlin, Heidelberg, New York. first. Springer-Verlag. 10.1007/978-3-642-96933-1. 978-3-642-96933-1.
- Book: Andrews, D.L.. 1990. Perspectives in Modern Chemical Spectroscopy. Berlin, Heidelberg, New York. Springer-Verlag. 10.1007/978-3-642-75456-2. 978-3-642-75456-2.
- Book: Andrews. D.L.. 1990. Lasers in Chemistry. Berlin, Heidelberg, New York. second. Springer-Verlag. 10.1007/978-3-642-97212-6. 978-3-642-97212-6.
- Book: Andrews, D.L.. 1992. Applied Laser Spectroscopy: Techniques, Instrumentation and Applications. New York, Weinheim, Cambridge. VCH. 978-3-527-28072-8. 473385274.
- Book: Andrews, D.L.. Davies, A.M.C. . 1995. Frontiers in Analytical Spectroscopy . Cambridge. Royal Society of Chemistry. 978-0-854-04730-7. 473311866 .
- Book: Andrews, D.L.. Demidov, A.A. . 1995. An Introduction to Laser Spectroscopy. New York. Plenum. 10.1007/978-1-4613-0337-4 . first. 978-1-4613-0337-4.
- Book: Andrews. D.L.. 1997. Lasers in Chemistry. Berlin, Heidelberg, New York. third. Springer-Verlag. 10.1007/978-3-642-60635-9. 978-3-642-60635-9. 93727414.
- Book: Andrews, D.L.. Demidov, A.A. . 1999. Resonance Energy Transfer . Chichester, New York, Weinheim. Wiley. 978-0-471-98732-1.
- Book: Andrews, D.L.. Demidov, A.A. . 2002. An Introduction to Laser Spectroscopy. New York, Boston, Dordrecht. Kluwer Academic/Plenum. 10.1007/978-1-4615-0727-7 . second. 978-1-4615-0727-7.
- Book: Andrews. D.L.. Allcock. P.. 2002. Optical Harmonics in Molecular Systems. Weinheim. Wiley VCH. 978-3-527-60274-2.
- Book: Andrews, D.L.. 2005. Energy Harvesting Materials . New Jersey, London, Singapore. World Scientific. 10.1142/5891. 978-981-256-412-2.
- Book: Andrews, D.L.. Gaburro, Z.. 2007. Frontiers in Surface Nanophotonics: Principles and Applications. Optical Sciences. New York. Springer-Verlag. 133 in Springer Series in Optical Sciences. 10.1007/978-0-387-48951-3. 978-0-387-48951-3.
- Book: Andrews, D.L.. 2008. Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces . Burlington MA. Academic Press. 10.1016/B978-0-12-374027-4.X0001-1. 978-0-12-374027-4.
- Book: Andrews, D.L.. 2009. Encyclopedia of Applied Spectroscopy. Weinheim. Wiley VCH. 978-3-527-40773-6. 751034077.
- Book: Andrews, D.L.. Scholes, G.D. . Wiederrecht, G.P. . 2011. Comprehensive Nanoscience and Nanotechnology. London, Burlington MA, San Diego CA . Academic Press. 1-5. first. 978-0-12-374396-1.
- Book: Andrews, D.L. . Babiker, M.. 2012. The Angular Momentum of Light . Cambridge, New York. Cambridge University Press. 10.1017/CBO9780511795213. 978-0-511-79521-3.
- Book: Andrews. D.L.. 2014. Molecular Photophysics and Spectroscopy. San Rafael CA. first. Morgan & Claypool. 978-1-627-05287-0.
- Book: Andrews, D.L. . 2015. Photonics. Hoboken NJ. Wiley. 1-4. 978-1-118-22552-3.
- Book: Andrews, D.L.. Grote, J.G. . 2015. New Horizons in Nanoscience and Engineering. Bellingham WA. 10.1117/3.2196174. SPIE Press. 978-1-62841-795-1 .
- Book: Andrews. D.L.. Bradshaw. D.S.. 2016. Optical Nanomanipulation . San Rafael CA. first. Morgan & Claypool. 978-1-6817-4464-3.
- Book: Andrews. D.L.. Bradshaw. D.S.. 2018. Introduction to Photon Science and Technology. Bellingham WA. SPIE Press. 978-1-5106-2195-4 .
- Book: Andrews, D.L.. Nann, T.. Lipson, R.H. . 2019. Comprehensive Nanoscience and Nanotechnology. London, Burlington MA, San Diego CA . Academic Press. 1-5. second. 978-0-12-812296-9.
- Book: Ribeiro, P.. Andrews, D.L.. Raposo, M. . 2019. Optics, Photonics and Laser Technology 2017. Springer Series in Optical Sciences. 222 in Springer Series in Optical Sciences. New York. Springer. 10.1007/978-3-030-12692-6. 978-3-030-12692-6. 239152546.
- Book: Al-Amri, M.D.. Andrews, D.L.. Babiker, M. . 2021. Structured Light for Optical Communication. Amsterdam. Elsevier. 10.1016/C2019-0-00727-3. 978-0-12-821510-4. 242131667.
- Book: Andrews. D.L.. Lipson. R.H.. 2021. Molecular Photophysics and Spectroscopy. Bristol. second. IOP Publishing. 10.1088/978-0-7503-3683-3. 978-0-75-033681-9. 234926474.
- Book: Andrews. D.L.. Bradshaw. D.S.. 2022. Optical Nanomanipulation. Bristol. second. IOP Publishing. 10.1088/978-0-7503-4191-2. 978-0-7503-4189-9. 247422236.
Notes and References
- https://research-portal.uea.ac.uk/en/persons/david-andrews UEA profile of David Andrews
- 10.1103/PhysRevB.49.8751 . Quantum electrodynamics of resonant energy transfer in condensed matter . Phys. Rev. B . 49 . 8751–8763 . 1994 . Andrews . D.L. . Juzeliūnas . G. . 13 . 10009655 . 1994PhRvB..49.8751J .
- 10.1088/1464-4266/4/2/370 . A quantum electrodynamics framework for the nonlinear optics of twisted beams . J. Opt. B: Quantum Semiclass. Opt. . 4 . S66–S72 . 2002 . Andrews . D.L. . Dávila Romero . L.C. . Babiker . M. . 2 . 2002JOptB...4S..66D .
- 10.1063/1.5018399 . Perspective: Quantum Hamiltonians for optical interactions . J. Chem. Phys. . 148 . 040901 . 2018 . Andrews . D.L. . Jones . G.A. . Woolley . R.G. . Salam . A. . 4 . 29390804 . 1801.07735 . 2018JChPh.148d0901A . free .
- 10.1364/JOSAB.383446 . Quantum electrodynamics in modern optics and photonics: tutorial . J. Opt. Soc. Am. B . 37 . 1153–1172 . 2020 . Andrews . D.L. . Bradshaw . D.S. . Forbes . K.A. . Salam . A. . 4 . 2020JOSAB..37.1153A . free .
- 10.1016/0584-8539(90)80004-I . Symmetry characterisation in molecular multiphoton spectroscopy . Spectrochimica Acta Part A . 46 . 871–885 . 1990 . Andrews . D.L. . 6 . 1990AcSpA..46..871A .
- 10.1088/2040-8986/aaaa56 . Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables . J. Opt. . 20 . 033003 . 2018 . Andrews . D.L. . 3 . 2018JOpt...20c3003A . free .
- 10.3390/sym10070298 . Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics . Symmetry . 10 . 298 . 2018 . Andrews . D.L. . 7 . 2018Symm...10..298A . free .
- 10.1103/PhysRevA.81.013424 . All-optical control of molecular fluorescence . Phys. Rev. A . 81 . 013424 . 2010 . Andrews . D.L. . Bradshaw . D.S. . 1 . 2010PhRvA..81a3424B .
- 10.1063/1.3556537 . A molecular theory for two-photon and three-photon fluorescence polarization . J. Chem. Phys. . 134 . 094503 . 2011 . Andrews . D.L. . Leeder . J.M. . 9 . 21384981 . 2011JChPh.134i4503L . free .
- 10.1088/0143-0807/33/2/345 . Chirality in fluorescence and energy transfer . Eur. J. Phys. . 33 . 345–358 . 2012 . Andrews . D.L. . Rice . E.M. . Bradshaw . D.S. . Saadi . K. . 53506589 .
- 10.1088/2050-6120/ab10f0 . Chirality in fluorescence and energy transfer . Methods Appl. Fluoresc. . 7 . 032001 . 2019 . Andrews . D.L. . 3 . 30889558 . 2019MApFl...7c2001A . 84184099 .
- 10.1103/PhysRevA.72.033816 . Optically induced forces and torques: Interactions between nanoparticles in a laser beam . Phys. Rev. A . 72 . 033816 . 2005 . Bradshaw . D.S. . Andrews . D.L. . 3 . 2005PhRvA..72c3816B .
- 10.1103/PhysRevA.78.043805 . Optical binding in nanoparticle assembly: Potential energy landscapes . Phys. Rev. A . 78 . 043805 . 2008 . Rodríguez . J.J. . Andrews . D.L. . Dávila Romero . L.C. . 4 . 2008PhRvA..78d3805R .
- 10.1088/0953-4075/43/10/102001 . Multiple optical trapping and binding: new routes to self-assembly . J. Phys. B: At. Mol. Opt. Phys. . 43 . 102001 . 2010 . Čižmár . T. . Andrews . D.L. . Dávila Romero . L.C. . Dholakia . K. . 10 . 118367877 .
- 10.1088/1361-6404/aa6050 . Manipulating particles with light: radiation and gradient forces . Eur. J. Phys. . 38 . 034008 . 2017 . Bradshaw . D.S. . Andrews . D.L. . 3 . 2017EJPh...38c4008B . free .
- 10.1515/nanoph-2019-0361 . Optical binding of nanoparticles . Nanophotonics . 9 . 1–17 . 2020 . Bradshaw . D.S. . Andrews . D.L. . Forbes . K.A. . free .
- 10.1103/PhysRevB.72.125331 . Resonance energy transfer and quantum dots . Phys. Rev. B . 72 . 125331 . 2005 . Andrews . D.L. . Scholes . G.D. . 12 . 2005PhRvB..72l5331S .
- 10.1063/1.2759489 . Resonance energy transfer: Spectral overlap, efficiency, and direction . J. Chem. Phys. . 127 . 084509 . 2007 . Andrews . D.L. . Rodríguez . J.J. . 8 . 17764271 . 2007JChPh.127h4509A . free .
- 10.1039/C002313M . On the conveyance of angular momentum in electronic energy transfer . Phys. Chem. Chem. Phys. . 12 . 7409–7417 . 2010 . Andrews . D.L. . 27 . 20539887 . 2010PCCP...12.7409A .
- 10.1103/PhysRevB.93.075151 . Quantum electrodynamics of resonance energy transfer in nanowire systems . Phys. Rev. B . 93 . 075151 . 2016 . Andrews . D.L. . Weeraddana . D. . Premaratne . M. . 7 . 2016PhRvB..93g5151W .
- 10.1016/0301-0104(89)87019-3 . A unified theory of radiative and radiationless molecular energy transfer . Chem. Phys. . 135 . 195–201 . 1989 . Andrews . D.L. . 2 . 1989CP....135..195A .
- 10.1063/1.1579677 . Resonance energy transfer: The unified theory revisited . J. Chem. Phys. . 119 . 2264–2274 . 2003 . Andrews . D.L. . Daniels . G.J. . Jenkins . R.D. . Bradshaw . D.S. . 4 . 2003JChPh.119.2264D .
- 10.1088/0143-0807/25/6/017 . Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach . Eur. J. Phys. . 25 . 845–858 . 2004 . Andrews . D.L. . Bradshaw . D.S. . 6 . 250845175 .
- 10.3389/fphy.2019.00100 . Resonance energy transfer: from fundamental theory to recent applications . Front. Phys. (Lausanne) . 7 . 100 . 2019 . Jones . G.A. . Bradshaw . D.S. . 2019FrP.....7..100J . free .
- Andrews . D.L. . Thirunamachandran . T. . On three-dimensional rotational averages . J. Chem. Phys. . 67 . 1977 . 11 . 5026–5033 . 10.1063/1.434725 . 1977JChPh..67.5026A .
- Ohnoutek . L. . Jeong . H.-H. . Jones . R.R. . Sachs . J. . Olohan . B.J. . Rasadean . D.M. . Pantos . G.D. . Andrews . D.L. . Fischer . P. . Valev . V.K. . 2021 . Optical activity in third-harmonic Rayleigh scattering: A new route for measuring chirality . Laser Photonics Rev. . 15 . 11 . 2100235 . 10.1002/lpor.202100235 . free . 2021LPRv...1500235O .
- https://www.advancedsciencenews.com/accessing-forbidden-colors-using-twisted-nanoparticles/ Accessing forbidden colors using "twisted" nanoparticles
- 10.1063/1.437535 . Hyper−Raman scattering by chiral molecules . J. Chem. Phys. . 70 . 1027 . 1979 . Andrews . D.L. . Thirunamachandran . T.. 2 . 1979JChPh..70.1027A .
- 10.1103/PhysRevA.85.063810 . Chirality and angular momentum in optical radiation . Phys. Rev. A . 85 . 063810 . 2012 . Coles . M.M. . Andrews . D.L. . 6 . 1203.1755 . 2012PhRvA..85f3810C . 118571061 .
- 10.1016/j.cplett.2015.02.051 . Signatures of material and optical chirality: Origins and measures . Chem. Phys. Lett. . 626 . 106–110 . 2015 . Coles . M.M. . Andrews . D.L. . Bradshaw . D.S. . Leeder . J.M. . 2015CPL...626..106B . free .
- 10.1002/anie.202011745 . 500-fold amplification of small molecule circularly polarized luminescence through circularly polarized FRET . Angew. Chem. Int. Ed. . 60 . 222–227 . 2021 . Wade . J. . Andrews . D.L. . Brandt . J.R. . Reger . D. . Zinna . F. . Amsharov . K.Y. . Jux . N. . Fuchter . M.J. . 1 . 33030274 . 7839560 . free .
- Babiker . M. . Bennett . C.R. . Andrews . D.L. . Dávila Romero . L.C. . 2002. Orbital angular momentum exchange in the interaction of twisted light with molecules . Phys. Rev. Lett. . 89 . 14 . 143601 . 10.1103/PhysRevLett.89.143601 . 12366045 . 2002PhRvL..89n3601B .
- Williams . M.D. . Coles . M.M. . Andrews . D.L. . Bradshaw . D.S. . Saadi . K. . 2013 . Optical vortex generation from molecular chromophore arrays . Phys. Rev. Lett. . 111 . 15 . 153603 . 10.1103/PhysRevLett.111.153603 . 24160600 . 1305.0422 . 2013PhRvL.111o3603W . free .
- Forbes . K.A. . Andrews . D.L. . 2018 . Optical orbital angular momentum: twisted light and chirality . Opt. Lett. . 43 . 3 . 435–438 . 10.1364/OL.43.000435 . 29400808 . 2018OptL...43..435F .
- Babiker . M. . Andrews . D.L. . Lembessis . V.E. . 2019 . Atoms in complex twisted light . J. Opt. . 21 . 1 . 013001 . 10.1088/2040-8986/aaed14 . 2019JOpt...21a3001B . free .
- Forbes . K.A. . Andrews . D.L. . 2019 . Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media . Phys. Rev. A . 99 . 2 . 023837 . 10.1103/PhysRevA.99.023837 . 1809.05470 . 2019PhRvA..99b3837F . 73555231 .
- Forbes . K.A. . Andrews . D.L. . 2021 . Orbital angular momentum of twisted light: chirality and optical activity . J. Phys. Photonics . 3 . 2 . 022007 . 10.1088/2515-7647/abdb06 . 2021JPhP....3b2007F . free .
- https://www.uea.ac.uk/about/news/article/emeritus-professor-awarded-prestigious-institute-of-physics-award Emeritus professor awarded prestigious Institute of Physics award
- https://www.iop.org/about/awards/2023-thomas-young-medal-and-prize Professor David Andrews and Professor Ventsislav Valev for the discovery of chirality-sensitive optical harmonic scattering, first predicted theoretically in 1979 and demonstrated experimentally 40 years later
- https://www.rsc.org/prizes-funding/prizes/2022-winners/chiroptical-harmony A team of scientists from the UK, Belgium and Germany has won the Royal Society of Chemistry’s Faraday Division Horizon Prize for the discovery of chiroptical harmonic scattering, theoretically predicted in 1979 and demonstrated experimentally 40 years later
- https://optics.org/news/9/8/40 David Andrews elected to SPIE presidential chain
- https://www.optica.org/en-us/get_involved/awards_and_honors/fellow_members/elected_fellows/2016_fellows/ Optica Fellows 2016
- https://spie.org/profile/David.Andrews-27665?SSO=1 SPIE Profile