In the area of modern algebra known as group theory, the Conway group
Co3
495,766,656,000
= 210375371123
≈ 5.
Co3
Λ
Co0
Co1
2 x Co3
Co0
The Schur multiplier and the outer automorphism group are both trivial.
Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation.
Co3 has a doubly transitive permutation representation on 276 points.
showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either
\Z/2\Z x Co2
\Z/2\Z x Co3
Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.
found the 14 conjugacy classes of maximal subgroups of
Co3
No. | Structure | Order | Index | Comments | |
---|---|---|---|---|---|
1 | McL 2 | 1,796,256,000 = 28·36·53·7·11 | 276 = 22·3·23 | McL fixes a 2-2-3 triangle. The maximal subgroup also includes reflections of the triangle. Co3 Co3 | |
2 | HS | 44,352,000 = 29·32·53·7·11 | 11,178 = 2·35·23 | fixes a 2-3-3 triangle | |
3 | U4(3).22 | 13,063,680 = 29·36·5·7 | 37,950 = 2·3·52·11·23 | ||
4 | M23 | 10,200,960 = 27·32·5·7·11·23 | 48,600 = 23·35·52 | fixes a 2-3-4 triangle | |
5 | 35:(2 × M11) | 3,849,120 = 25·37·5·11 | 128,800 = 25·52·7·23 | fixes or reflects a 3-3-3 triangle | |
6 | 2·Sp6(2) | 2,903,040 = 210·34·5·7 | 170,775 = 33·52·11·23 | centralizer of an involution of class 2A (trace 8), which moves 240 of the 276 type 2-2-3 triangles | |
7 | U3(5):S3 | 756,000 = 25·33·53·7 | 655,776 = 25·34·11·23 | ||
8 | 3:4S6 | 699,840 = 26·37·5 | 708,400 = 24·52·7·11·23 | normalizer of a subgroup of order 3 (class 3A) | |
9 | 24·A8 | 322,560 = 210·32·5·7 | 1,536,975 = 35·52·11·23 | ||
10 | PSL(3,4):(2 × S3) | 241,920 = 28·33·5·7 | 2,049,300 = 22·34·52·11·23 | ||
11 | 2 × M12 | 190,080 = 27·33·5·11 | 2,608,200 = 23·34·52·7·23 | centralizer of an involution of class 2B (trace 0), which moves 264 of the 276 type 2-2-3 triangles | |
12 | [2<sup>10</sup>.3<sup>3</sup>] | 27,648 = 210·33 | 17,931,375 = 34·53·7·11·23 | ||
13 | S3 × PSL(2,8):3 | 9,072 = 24·34·7 | 54,648,000 = 26·33·53·11·23 | normalizer of a subgroup of order 3 (class 3C, trace 0) | |
14 | A4 × S5 | 1,440 = 25·32·5 | 344,282,400 = 25·35·52·7·11·23 |
Traces of matrices in a standard 24-dimensional representation of Co3 are shown.[1] The names of conjugacy classes are taken from the Atlas of Finite Group Representations.[2] [3] The cycle structures listed act on the 276 2-2-3 triangles that share the fixed type 3 side.[4]
Class | Order of centralizer | Size of class | Trace | Cycle type | |
---|---|---|---|---|---|
1A | all Co3 | 1 | 24 | ||
2A | 2,903,040 | 33·52·11·23 | 8 | 136,2120 | |
2B | 190,080 | 23·34·52·7·23 | 0 | 112,2132 | |
3A | 349,920 | 25·52·7·11·23 | -3 | 16,390 | |
3B | 29,160 | 27·3·52·7·11·23 | 6 | 115,387 | |
3C | 4,536 | 27·33·53·11·23 | 0 | 392 | |
4A | 23,040 | 2·35·52·7·11·23 | -4 | 116,210,460 | |
4B | 1,536 | 2·36·53·7·11·23 | 4 | 18,214,460 | |
5A | 1500 | 28·36·7·11·23 | -1 | 1,555 | |
5B | 300 | 28·36·5·7·11·23 | 4 | 16,554 | |
6A | 4,320 | 25·34·52·7·11·23 | 5 | 16,310,640 | |
6B | 1,296 | 26·33·53·7·11·23 | -1 | 23,312,639 | |
6C | 216 | 27·34·53·7·11·23 | 2 | 13,26,311,638 | |
6D | 108 | 28·34·53·7·11·23 | 0 | 13,26,33,642 | |
6E | 72 | 27·35·53·7·11·23 | 0 | 34,644 | |
7A | 42 | 29·36·53·11·23 | 3 | 13,739 | |
8A | 192 | 24·36·53·7·11·23 | 2 | 12,23,47,830 | |
8B | 192 | 24·36·53·7·11·23 | -2 | 16,2,47,830 | |
8C | 32 | 25·37·53·7·11·23 | 2 | 12,23,47,830 | |
9A | 162 | 29·33·53·7·11·23 | 0 | 32,930 | |
9B | 81 | 210·33·53·7·11·23 | 3 | 13,3,930 | |
10A | 60 | 28·36·52·7·11·23 | 3 | 1,57,1024 | |
10B | 20 | 28·37·52·7·11·23 | 0 | 12,22,52,1026 | |
11A | 22 | 29·37·53·7·23 | 2 | 1,1125 | power equivalent |
11B | 22 | 29·37·53·7·23 | 2 | 1,1125 | |
12A | 144 | 26·35·53·7·11·23 | -1 | 14,2,34,63,1220 | |
12B | 48 | 26·36·53·7·11·23 | 1 | 12,22,32,64,1220 | |
12C | 36 | 28·35·53·7·11·23 | 2 | 1,2,35,43,63,1219 | |
14A | 14 | 29·37·53·11·23 | 1 | 1,2,751417 | |
15A | 15 | 210·36·52·7·11·23 | 2 | 1,5,1518 | |
15B | 30 | 29·36·52·7·11·23 | 1 | 32,53,1517 | |
18A | 18 | 29·35·53·7·11·23 | 2 | 6,94,1813 | |
20A | 20 | 28·37·52·7·11·23 | 1 | 1,53,102,2012 | power equivalent |
20B | 20 | 28·37·52·7·11·23 | 1 | 1,53,102,2012 | |
21A | 21 | 210·36·53·11·23 | 0 | 3,2113 | |
22A | 22 | 29·37·53·7·23 | 0 | 1,11,2212 | power equivalent |
22B | 22 | 29·37·53·7·23 | 0 | 1,11,2212 | |
23A | 23 | 210·37·53·7·11 | 1 | 2312 | power equivalent |
23B | 23 | 210·37·53·7·11 | 1 | 2312 | |
24A | 24 | 27·36·53·7·11·23 | -1 | 124,6,1222410 | |
24B | 24 | 27·36·53·7·11·23 | 1 | 2,32,4,122,2410 | |
30A | 30 | 29·36·52·7·11·23 | 0 | 1,5,152,308 |
In analogy to monstrous moonshine for the monster M, for Co3, the relevant McKay-Thompson series is
T4A(\tau)
\begin{align}j4A(\tau) &=T4A(\tau)+24\\ &=(\tfrac{η2(2\tau)}{η(\tau)η(4\tau)})24\\ &=((\tfrac{η(\tau)}{η(4\tau)})4+42(\tfrac{η(4\tau)}{η(\tau)})4
| ||||
) |
+24+276q+2048q2+11202q3+49152q4+... \end{align}
and η(τ) is the Dedekind eta function.