Conway–Maxwell–binomial | |||||||
Type: | mass | ||||||
Parameters: | n\in\{1,2,\ldots\}, 0\leqp\leq1, -infty<\nu<infty | ||||||
Support: | x\in\{0,1,2,...,n\} | ||||||
Pdf: |
\binom{n}{x}\nupj(1-p)n-x | ||||||
Cdf: |
\Pr(X=i) | ||||||
Mean: | Not listed | ||||||
Median: | No closed form | ||||||
Mode: | See text | ||||||
Variance: | Not listed | ||||||
Skewness: | Not listed | ||||||
Kurtosis: | Not listed | ||||||
Entropy: | Not listed | ||||||
Mgf: | See text | ||||||
Char: | See text |
In probability theory and statistics, the Conway–Maxwell–binomial (CMB) distribution is a three parameter discrete probability distribution that generalises the binomial distribution in an analogous manner to the way that the Conway–Maxwell–Poisson distribution generalises the Poisson distribution. The CMB distribution can be used to model both positive and negative association among the Bernoulli summands,.
The distribution was introduced by Shumeli et al. (2005),[1] and the name Conway–Maxwell–binomial distribution was introduced independently by Kadane (2016) [2] and Daly and Gaunt (2016).[3]
The Conway–Maxwell–binomial (CMB) distribution has probability mass function
\Pr(Y=j)= | 1 |
Cn,p,\nu |
\binom{n}{j}\nupj(1-p)n-j, j\in\{0,1,\ldots,n\},
where
n\inN=\{1,2,\ldots\}
0\leqp\leq1
-infty<\nu<infty
Cn,p,\nu
Cn,p,\nu
n\binom{n}{i} | |
=\sum | |
i=0 |
\nupi(1-p)n-i.
Y
Y\sim\operatorname{CMB}(n,p,\nu)
The case
\nu=1
Y\sim\operatorname{Bin}(n,p)
The following relationship between Conway–Maxwell–Poisson (CMP) and CMB random variables [1] generalises a well-known result concerning Poisson and binomial random variables. If
X1\sim\operatorname{CMP}(λ1,\nu)
X2\sim\operatorname{CMP}(λ2,\nu)
X1|X1+X2=n\sim\operatorname{CMB}(n,λ1/(λ1+λ2),\nu)
The random variable
Y\sim\operatorname{CMB}(n,p,\nu)
Z1,\ldots,Zn
\Pr(Z1=z1,\ldots,Zn=z
|
\binom{n}{k}\nu-1pk(1-p)n-k,
where
k=z1+ … +zn
\operatorname{E}Z1\not=p
\nu=1
Let
n | |
T(x,\nu)=\sum | |
k=0 |
xk\binom{n}{k}\nu.
Then, the probability generating function, moment generating function and characteristic function are given, respectively, by:[2]
G(t)= | T(tp/(1-p),\nu) |
T(p(1-p),\nu) |
,
M(t)= | T(etp/(1-p),\nu) |
T(p(1-p),\nu) |
,
\varphi(t)= | T(eitp/(1-p),\nu) |
T(p(1-p),\nu) |
.
For general
\nu
(j)r=j(j-1) … (j-r+1)
Y\sim\operatorname{CMB}(n,p,\nu)
\nu>0
| ||||
\operatorname{E}[((Y) | ||||
r) |
\nu | |
((n) | |
r) |
pr,
r=1,\ldots,n-1
Let
Y\sim\operatorname{CMB}(n,p,\nu)
a= | n+1 | |||
|
.
Then the mode of
Y
\lfloora\rfloor
a
Y
a
a-1
Let
Y\sim\operatorname{CMB}(n,p,\nu)
f:Z+\mapstoR
\operatorname{E}|f(Y+1)|<infty
\operatorname{E}|Y\nuf(Y)|<infty
\operatorname{E}[p(n-Y)\nuf(Y+1)-(1-p)Y\nuf(Y)]=0.
Fix
λ>0
\nu>0
\nu,\nu) | |
Y | |
n\simCMB(n,λ/n |
Yn
CMP(λ,\nu)
n → infty
Let
X1,\ldots,Xn
\Pr(X1=x1,\ldots,Xn=x
|
\binom{n}{k}\nu-1
xj | |
\prod | |
j |
1-xj | |
(1-p | |
j) |
,
where
k=x1+ … +xn
\prime | |
C | |
n |
Cn'=\sum
n | |
k=0 |
\binom{n}{k}\nu-1
\sum | |
A\inFk |
\prodi\inpi
\prod | |
j\inAc |
(1-pj),
where
Fk=\left\{A\subseteq\{1,\ldots,n\}:|A|=k\right\}.
Let
W=X1+ … +Xn
W
\Pr(W=k)= | 1 |
Cn' |
\binom{n}{k}\nu-1
\sum | |
A\inFk |
\prodi\inpi\prod
j\inAc |
(1-pj),
for
k=0,1,\ldots,n
The case
\nu=1
p1= … =pn=p
\operatorname{CMB}(n,p,\nu)