Continuant (mathematics) explained

In algebra, the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in continued fractions.

Definition

The n-th continuant

Kn(x1,x2,\ldots,xn)

is defined recursively by

K0=1;

K1(x1)=x1;

Kn(x1,x2,\ldots,xn)=xnKn-1(x1,x2,\ldots,xn-1)+Kn-2(x1,x2,\ldots,xn-2).

Properties

Kn(x1,x2,\ldots,xn)

can be computed by taking the sum of all possible products of x1,...,xn, in which any number of disjoint pairs of consecutive terms are deleted (Euler's rule). For example,

K5(x1,x2,x3,x4,x5)=x1x2x3x4x5 + x3x4x5 + x1x4x5 + x1x2x5 + x1x2x3 + x1 + x3 + x5.

It follows that continuants are invariant with respect to reversing the order of indeterminates:

Kn(x1,\ldots,xn)=Kn(xn,\ldots,x1).

Kn(x1,x2,\ldots,xn)= \det\begin{pmatrix}x1&1&0&&0\ -1&x2&1&\ddots&\vdots\\ 0&-1&\ddots&\ddots&0\\ \vdots&\ddots&\ddots&\ddots&1\ 0&&0&-1&xn \end{pmatrix}.

Kn(1,\ldots, 1)=Fn+1

, the (n+1)-st Fibonacci number.
Kn(x1,\ldots,xn)
Kn-1(x2,\ldots,xn)

=x1+

Kn-2(x3,\ldots,xn)
Kn-1(x2,\ldots,xn)

.

Kn(x1,\ldots,xn)
Kn-1(x2,\ldots,xn)

=[x1;x2,\ldots,xn]=x1+

1
\displaystyle{x+
1
x3+\ldots
2
}.

\begin{pmatrix}Kn(x1,\ldots,xn)&Kn-1(x1,\ldots,xn-1)\Kn-1(x2,\ldots,xn)&Kn-2(x2,\ldots,xn-1)\end{pmatrix}= \begin{pmatrix}x1&1\ 1&0\end{pmatrix} x \ldots x \begin{pmatrix}xn&1\ 1&0\end{pmatrix}

.

Kn(x1,\ldots,xn)Kn-2(x2,\ldots,xn-1)-Kn-1(x1,\ldots,xn-1)Kn-1(x2,\ldots,xn)=(-1)n.

Kn-1(x2,\ldots,xn)Kn+2(x1,\ldots,xn+2)-Kn(x1,\ldots,xn)Kn+1(x2,\ldots,xn+2)=(-1)n+1xn+2.

Generalizations

A generalized definition takes the continuant with respect to three sequences a, b and c, so that K(n) is a polynomial of a1,...,an, b1,...,bn-1 and c1,...,cn-1. In this case the recurrence relation becomes

K0=1;

K1=a1;

Kn=anKn-1-bn-1cn-1Kn-2.

Since br and cr enter into K only as a product brcr there is no loss of generality in assuming that the br are all equal to 1.

The generalized continuant is precisely the determinant of the tridiagonal matrix

\begin{pmatrix} a1&b1&0&\ldots&0&0\\ c1&a2&b2&\ldots&0&0\\ 0&c2&a3&\ldots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\ldots&an-1&bn-1\\ 0&0&0&\ldots&cn-1&an \end{pmatrix}.

In Muir's book the generalized continuant is simply called continuant.

References

. Thomas Muir . Thomas Muir (mathematician) . A treatise on the theory of determinants . registration . 1960 . . 516 - 525 .

. Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1 . George Chrystal . George Chrystal . American Mathematical Society . 1999 . 0-8218-1649-7 . 500 .