In mathematics, the classifying space
\operatorname{BSO}(n)
\operatorname{SO}(n)
\operatorname{SO}(n)
\operatorname{ESO}(n) → \operatorname{BSO}(n)
\operatorname{SO}(n)
\operatorname{BSO}(n)
There is a canonical inclusion of real oriented Grassmannians given by
k+1 | |
\widetilde\operatorname{Gr} | |
n(R |
), V\mapstoV x \{0\}
infty) :=\lim | |
\operatorname{BSO}(n) :=\widetilde\operatorname{Gr} | |
k → infty |
k). | |
\widetilde\operatorname{Gr} | |
n(R |
Since real oriented Grassmannians can be expressed as a homogeneous space by:
k) =\operatorname{SO}(n+k)/(\operatorname{SO}(n) x \operatorname{SO}(k)) | |
\widetilde\operatorname{Gr} | |
n(R |
the group structure carries over to
\operatorname{BSO}(n)
\operatorname{SO}(1) \cong1
\operatorname{BSO}(1) \cong\{*\}
\operatorname{SO}(2) \cong\operatorname{U}(1)
\operatorname{BSO}(2) \cong\operatorname{BU}(1) \congCPinfty
X
\operatorname{SO}(n)
\operatorname{Prin}\operatorname{SO(n)}(X)
X
[X,\operatorname{BSO}(n)] → \operatorname{Prin}\operatorname{SO(n)}(X), [f]\mapstof*\operatorname{ESO}(n)
is bijective.
The cohomology ring of
\operatorname{BSO}(n)
Z2
*(\operatorname{BSO}(n);Z | |
H | |
2) =Z |
2[w2,\ldots,wn].
\operatorname{char}=2
The cohomology ring of
\operatorname{BSO}(n)
Q
*(\operatorname{BSO}(2n);Q) \congQ[p | |
H | |
1,\ldots,p |
n,e]/(p
2), | |
n-e |
*(\operatorname{BSO}(2n+1);Q) \congQ[p | |
H | |
1,\ldots,p |
n].
The results holds more generally for every ring with characteristic
\operatorname{char} ≠ 2
The canonical inclusions
\operatorname{SO}(n)\hookrightarrow\operatorname{SO}(n+1)
\operatorname{BSO}(n)\hookrightarrow\operatorname{BSO}(n+1)
\operatorname{SO} :=\limn → infty\operatorname{SO}(n);
\operatorname{BSO} :=\limn → infty\operatorname{BSO}(n).
\operatorname{BSO}
\operatorname{SO}