This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963. It complements the article on Lie algebra in the area of abstract algebra.
An English version and review of this classification was published by Popovych et al. in 2003.
Let
{akg}n
n
e1,...,en
n\leq4
{akg}
{akg}1
2{akg}1
R2
{akg}2.1
ak{aff}(1)=\left\{\begin{pmatrix}a&b\ 0&0\end{pmatrix}:a,b\inR\right\}
[e1,e2]=e1.
3{akg}1
{akg}2.1 ⊕ {akg}1
{akg}3.1
[e2,e3]=e1;
{akg}3.2
[e1,e3]=e1, [e2,e3]=e1+e2;
{akg}3.3
[e1,e3]=e1, [e2,e3]=e2;
{akg}3.4
ak{p}(1,1)
\alpha=-1
[e1,e3]=e1, [e2,e3]=\alphae2, -1\leq\alpha<1, \alpha ≠ 0;
{akg}3.5
[e1,e3]=\betae1-e2, [e2,e3]=e1+\betae2, \beta\geq0;
{akg}3.6
ak{sl}(2,R),
[e1,e2]=e1, [e2,e3]=e3, [e1,e3]=2e2;
{akg}3.7
ak{so}(3),
[e2,e3]=e1, [e3,e1]=e2, [e1,e2]=e3.
{akg}3.3
{akg}3.5
\beta → infty
Over the field
{C}
{akg}3.5
{akg}3.7
{akg}3.4
{akg}3.6
4{akg}1
{akg}2.1 ⊕ 2{akg}1
[e1,e2]=e1;
2{akg}2.1
[e1,e2]=e1 [e3,e4]=e3;
{akg}3.1 ⊕ {akg}1
[e2,e3]=e1;
{akg}3.2 ⊕ {akg}1
[e1,e3]=e1, [e2,e3]=e1+e2;
{akg}3.3 ⊕ {akg}1
[e1,e3]=e1, [e2,e3]=e2;
{akg}3.4 ⊕ {akg}1
[e1,e3]=e1, [e2,e3]=\alphae2, -1\leq\alpha<1, \alpha ≠ 0;
{akg}3.5 ⊕ {akg}1
[e1,e3]=\betae1-e2 [e2,e3]=e1+\betae2, \beta\geq0;
{akg}3.6 ⊕ {akg}1
[e1,e2]=e1, [e2,e3]=e3, [e1,e3]=2e2;
{akg}3.7 ⊕ {akg}1
[e1,e2]=e3, [e2,e3]=e1, [e3,e1]=e2;
{akg}4.1
[e2,e4]=e1, [e3,e4]=e2;
{akg}4.2
[e1,e4]=\betae1, [e2,e4]=e2, [e3,e4]=e2+e3, \beta ≠ 0;
{akg}4.3
[e1,e4]=e1, [e3,e4]=e2;
{akg}4.4
[e1,e4]=e1, [e2,e4]=e1+e2, [e3,e4]=e2+e3;
{akg}4.5
[e1,e4]=\alphae1, [e2,e4]=\betae2, [e3,e4]=\gammae3, \alpha\beta\gamma ≠ 0;
{akg}4.6
[e1,e4]=\alphae1, [e2,e4]=\betae2-e3, [e3,e4]=e2+\betae3, \alpha>0;
{akg}4.7
[e2,e3]=e1, [e1,e4]=2e1, [e2,e4]=e2, [e3,e4]=e2+e3;
{akg}4.8
[e2,e3]=e1, [e1,e4]=(1+\beta)e1, [e2,e4]=e2, [e3,e4]=\betae3, -1\leq\beta\leq1;
{akg}4.9
[e2,e3]=e1, [e1,e4]=2\alphae1, [e2,e4]=\alphae2-e3, [e3,e4]=e2+\alphae3, \alpha\geq0;
{akg}4.10
[e1,e3]=e1, [e2,e3]=e2, [e1,e4]=-e2, [e2,e4]=e1.
Algebra
{akg}4.3
{akg}4.2
\beta → 0
Over the field
{C}
{akg}3.5 ⊕ {akg}1
{akg}3.7 ⊕ {akg}1
{akg}4.6
{akg}4.9
{akg}4.10
{akg}3.4 ⊕ {akg}1
{akg}3.6 ⊕ {akg}1
{akg}4.5
{akg}4.8
{2akg}2.1