Classification of low-dimensional real Lie algebras explained

This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963. It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al. in 2003.

Mubarakzyanov's Classification

Let

{akg}n

be

n

-dimensional Lie algebra over the field of real numberswith generators

e1,...,en

,

n\leq4

. For each algebra

{akg}

we adduce only non-zero commutators between basis elements.

One-dimensional

{akg}1

, abelian.

Two-dimensional

2{akg}1

, abelian

R2

;

{akg}2.1

, solvable

ak{aff}(1)=\left\{\begin{pmatrix}a&b\ 0&0\end{pmatrix}:a,b\inR\right\}

,

[e1,e2]=e1.

Three-dimensional

3{akg}1

, abelian, Bianchi I;

{akg}2.1{akg}1

, decomposable solvable, Bianchi III;

{akg}3.1

, Heisenberg–Weyl algebra, nilpotent, Bianchi II,

[e2,e3]=e1;

{akg}3.2

, solvable, Bianchi IV,

[e1,e3]=e1,[e2,e3]=e1+e2;

{akg}3.3

, solvable, Bianchi V,

[e1,e3]=e1,[e2,e3]=e2;

{akg}3.4

, solvable, Bianchi VI, Poincaré algebra

ak{p}(1,1)

when

\alpha=-1

,

[e1,e3]=e1,[e2,e3]=\alphae2,-1\leq\alpha<1,\alpha0;

{akg}3.5

, solvable, Bianchi VII,

[e1,e3]=\betae1-e2,[e2,e3]=e1+\betae2,\beta\geq0;

{akg}3.6

, simple, Bianchi VIII,

ak{sl}(2,R),

[e1,e2]=e1,[e2,e3]=e3,[e1,e3]=2e2;

{akg}3.7

, simple, Bianchi IX,

ak{so}(3),

[e2,e3]=e1,[e3,e1]=e2,[e1,e2]=e3.

Algebra

{akg}3.3

can be considered as an extreme case of

{akg}3.5

, when

\betainfty

, forming contraction of Lie algebra.

Over the field

{C}

algebras

{akg}3.5

,

{akg}3.7

are isomorphic to

{akg}3.4

and

{akg}3.6

, respectively.

Four-dimensional

4{akg}1

, abelian;

{akg}2.12{akg}1

, decomposable solvable,

[e1,e2]=e1;

2{akg}2.1

, decomposable solvable,

[e1,e2]=e1[e3,e4]=e3;

{akg}3.1{akg}1

, decomposable nilpotent,

[e2,e3]=e1;

{akg}3.2{akg}1

, decomposable solvable,

[e1,e3]=e1,[e2,e3]=e1+e2;

{akg}3.3{akg}1

, decomposable solvable,

[e1,e3]=e1,[e2,e3]=e2;

{akg}3.4{akg}1

, decomposable solvable,

[e1,e3]=e1,[e2,e3]=\alphae2,-1\leq\alpha<1,\alpha0;

{akg}3.5{akg}1

, decomposable solvable,

[e1,e3]=\betae1-e2[e2,e3]=e1+\betae2,\beta\geq0;

{akg}3.6{akg}1

, unsolvable,

[e1,e2]=e1,[e2,e3]=e3,[e1,e3]=2e2;

{akg}3.7{akg}1

, unsolvable,

[e1,e2]=e3,[e2,e3]=e1,[e3,e1]=e2;

{akg}4.1

, indecomposable nilpotent,

[e2,e4]=e1,[e3,e4]=e2;

{akg}4.2

, indecomposable solvable,

[e1,e4]=\betae1,[e2,e4]=e2,[e3,e4]=e2+e3,\beta0;

{akg}4.3

, indecomposable solvable,

[e1,e4]=e1,[e3,e4]=e2;

{akg}4.4

, indecomposable solvable,

[e1,e4]=e1,[e2,e4]=e1+e2,[e3,e4]=e2+e3;

{akg}4.5

, indecomposable solvable,

[e1,e4]=\alphae1,[e2,e4]=\betae2,[e3,e4]=\gammae3,\alpha\beta\gamma0;

{akg}4.6

, indecomposable solvable,

[e1,e4]=\alphae1,[e2,e4]=\betae2-e3,[e3,e4]=e2+\betae3,\alpha>0;

{akg}4.7

, indecomposable solvable,

[e2,e3]=e1,[e1,e4]=2e1,[e2,e4]=e2,[e3,e4]=e2+e3;

{akg}4.8

, indecomposable solvable,

[e2,e3]=e1,[e1,e4]=(1+\beta)e1,[e2,e4]=e2,[e3,e4]=\betae3,-1\leq\beta\leq1;

{akg}4.9

, indecomposable solvable,

[e2,e3]=e1,[e1,e4]=2\alphae1,[e2,e4]=\alphae2-e3,[e3,e4]=e2+\alphae3,\alpha\geq0;

{akg}4.10

, indecomposable solvable,

[e1,e3]=e1,[e2,e3]=e2,[e1,e4]=-e2,[e2,e4]=e1.

Algebra

{akg}4.3

can be considered as an extreme case of

{akg}4.2

, when

\beta0

, forming contraction of Lie algebra.

Over the field

{C}

algebras

{akg}3.5{akg}1

,

{akg}3.7{akg}1

,

{akg}4.6

,

{akg}4.9

,

{akg}4.10

are isomorphic to

{akg}3.4{akg}1

,

{akg}3.6{akg}1

,

{akg}4.5

,

{akg}4.8

,

{2akg}2.1

, respectively.

See also

References