In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.
Terms that are usually considered primitive in other notations (such as integers, Booleans, pairs, lists, and tagged unions) are mapped to higher-order functions under Church encoding. The Church–Turing thesis asserts that any computable operator (and its operands) can be represented under Church encoding. In the untyped lambda calculus the only primitive data type is the function.
A straightforward implementation of Church encoding slows some access operations from
O(1)
O(n)
n
Church encoding is complete but only representationally. Additional functions are needed to translate the representation into common data types, for display to people. It is not possible in general to decide if two functions are extensionally equal due to the undecidability of equivalence from Church's theorem. The translation may apply the function in some way to retrieve the value it represents, or look up its value as a literal lambda term. Lambda calculus is usually interpreted as using intensional equality. There are potential problems with the interpretation of results because of the difference between the intensional and extensional definition of equality.
Church numerals are the representations of natural numbers under Church encoding. The higher-order function that represents natural number n is a function that maps any function
f
f\circ=\underbrace{f\circf\circ … \circf}ntimes.
All Church numerals are functions that take two parameters. Church numerals 0, 1, 2, ..., are defined as follows in the lambda calculus.
Starting with 0 not applying the function at all, proceed with 1 applying the function once, 2 applying the function twice, 3 applying the function three times, etc.:
\begin{array}{r|l|l} Number&Functiondefinition&Lambdaexpression\\ \hline 0&0 f x=x&0=λf.λx.x\\ 1&1 f x=f x&1=λf.λx.f x\\ 2&2 f x=f (f x)&2=λf.λx.f (f x)\\ 3&3 f x=f (f (f x))&3=λf.λx.f (f (f x)) \\ \vdots&\vdots&\vdots \\ n&n f x=fn x&n=λf.λx.f\circ x \end{array}
The Church numeral 3 represents the action of applying any given function three times to a value. The supplied function is first applied to a supplied parameter and then successively to its own result. The end result is not the numeral 3 (unless the supplied parameter happens to be 0 and the function is a successor function). The function itself, and not its end result, is the Church numeral 3. The Church numeral 3 means simply to do anything three times. It is an ostensive demonstration of what is meant by "three times".
Arithmetic operations on numbers may be represented by functions on Church numerals. These functions may be defined in lambda calculus, or implemented in most functional programming languages (see converting lambda expressions to functions).
The addition function
\operatorname{plus}(m,n)=m+n
f\circ(x)=f\circ(f\circ(x))
\operatorname{plus}\equivλm.λn.λf.λx.m f (n f x)
The successor function
\operatorname{succ}(n)=n+1
(\operatorname{plus} 1)
\operatorname{succ}\equivλn.λf.λx.f (n f x)
The multiplication function
\operatorname{mult}(m,n)=m*n
f\circ(x)=(f\circ)\circ(x)
\operatorname{mult}\equivλm.λn.λf.λx.m (n f) x
The exponentiation function
\operatorname{exp}(m,n)=mn
n h x=hn x
h\tom,x\tof
n m f=mn f
\operatorname{exp} m n=mn=n m
\operatorname{exp}\equivλm.λn.n m
The
\operatorname{pred}(n)
\operatorname{pred}\equivλn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)
A Church numeral applies a function n times. The predecessor function must return a function that applies its parameter n - 1 times. This is achieved by building a container around f and x, which is initialized in a way that omits the application of the function the first time. See predecessor for a more detailed explanation.
The subtraction function can be written based on the predecessor function.
\operatorname{minus}\equivλm.λn.(n\operatorname{pred}) m
Function | Algebra | Identity | Function definition | Lambda expressions | ||
---|---|---|---|---|---|---|
n+1 | fn+1 x=f(fnx) | \operatorname{succ} n f x=f (n f x) | λn.λf.λx.f (n f x) | ... | ||
m+n | fm+n x=fm(fnx) | \operatorname{plus} m n f x=m f (n f x) | λm.λn.λf.λx.m f (n f x) | λm.λn.n\operatorname{succ}m | ||
m*n | fm*n x=(fm)n x | \operatorname{multiply} m n f x=m (n f) x | λm.λn.λf.λx.m (n f) x | λm.λn.λf.m (n f) | ||
mn | n m f=mn f | \operatorname{exp} m n f x=(n m) f x | λm.λn.λf.λx.(n m) f x | λm.λn.n m | ||
n-1 | \operatorname{inc}n\operatorname{con}=\operatorname{val}(fn-1x) | \operatorname{if}(n==0) 0 \operatorname{else} (n-1) | λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u) | |||
Subtraction (Monus) | m-n | fm-n x=(f-1)n(fmx) | \operatorname{minus} m n=(n\operatorname{pred}) m | ... | λm.λn.n\operatorname{pred}m |
Notes:
The predecessor function used in the Church encoding is,
\operatorname{pred}(n)=\begin{cases}0&ifn=0,\ n-1&otherwise\end{cases}
We need a way of applying the function 1 fewer times to build the predecessor. A numeral applies the function times to . The predecessor function must use the numeral to apply the function times.
Before implementing the predecessor function, here is a scheme that wraps the value in a container function. We will define new functions to use in place of and, called and . The container function is called . The left-hand side of the table shows a numeral applied to and .
\begin{array}{r|r|r} Number&Usinginit&Usingconst \\ \hline 0& \operatorname{init}=\operatorname{value} x& \\ 1& \operatorname{inc} \operatorname{init}=\operatorname{value} (f x)& \operatorname{inc} \operatorname{const}=\operatorname{value} x\\ 2& \operatorname{inc} (\operatorname{inc} \operatorname{init})=\operatorname{value} (f (f x))& \operatorname{inc} (\operatorname{inc} \operatorname{const})=\operatorname{value} (f x) \\ 3& \operatorname{inc} (\operatorname{inc} (\operatorname{inc} \operatorname{init}))=\operatorname{value} (f (f (f x)))& \operatorname{inc} (\operatorname{inc} (\operatorname{inc} \operatorname{const}))=\operatorname{value} (f (f x)) \\ \vdots&\vdots&\vdots \\ n& n\operatorname{inc} \operatorname{init}=\operatorname{value} (fn x)=\operatorname{value} (n f x)& n\operatorname{inc} \operatorname{const}=\operatorname{value} (fn-1 x)=\operatorname{value} ((n-1) f x)\\ \end{array}
The general recurrence rule is,
\operatorname{inc} (\operatorname{value} v)=\operatorname{value} (f v)
If there is also a function to retrieve the value from the container (called),
\operatorname{extract} (\operatorname{value} v)=v
Then may be used to define the function as,
\operatorname{samenum}=λn.λf.λx.\operatorname{extract} (n\operatorname{inc}\operatorname{init})=λn.λf.λx.\operatorname{extract} (\operatorname{value} (n f x))=λn.λf.λx.n f x=λn.n
The function is not intrinsically useful. However, as delegates calling of to its container argument, we can arrange that on the first application receives a special container that ignores its argument allowing to skip the first application of . Call this new initial container . The right-hand side of the above table shows the expansions of . Then by replacing with in the expression for the function we get the predecessor function,
\operatorname{pred}=λn.λf.λx.\operatorname{extract} (n\operatorname{inc}\operatorname{const})=λn.λf.λx.\operatorname{extract} (\operatorname{value} ((n-1) f x))=λn.λf.λx.(n-1) f x=λn.(n-1)
As explained below the functions,,, and may be defined as,
\begin{align} \operatorname{value}&=λv.(λh.h v)\\ \operatorname{extract}k&=k λu.u\\ \operatorname{inc}&=λg.λh.h (g f)\\ \operatorname{init}&=λh.h x\\ \operatorname{const}&=λu.x\end{align}
Which gives the lambda expression for as,
\operatorname{pred}=λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)
align='top' | Value containerThe value container applies a function to its value. It is defined by, \operatorname{value} v h=h v so, \operatorname{value}=λv.(λh.h v) IncThe function should take a value containing, and return a new value containing . \operatorname{inc} (\operatorname{value} v)=\operatorname{value} (f v) Letting g be the value container, g=\operatorname{value} v g f=\operatorname{value} v f=f v so, \operatorname{inc} g=\operatorname{value} (g f) \operatorname{inc}=λg.λh.h (g f) | align='top' | ExtractThe value may be extracted by applying the identity function, I=λu.u Using, \operatorname{value} v I=v so, \operatorname{extract} k=k I ConstTo implement the function is replaced with the that does not apply . We need to satisfy, \operatorname{inc} \operatorname{const}=\operatorname{value} x λh.h (\operatorname{const} f)=λh.h x Which is satisfied if, \operatorname{const} f=x Or as a lambda expression, \operatorname{const}=λu.x |
Pred may also be defined using pairs:
\begin{align} \operatorname{f}=& λp. \operatorname{pair} (\operatorname{second} p) (\operatorname{succ} (\operatorname{second} p))\\ \operatorname{zero}=& (λf.λx. x)\\ \operatorname{pc0}=& \operatorname{pair} \operatorname{zero} \operatorname{zero}\\ \operatorname{pred}=& λn. \operatorname{first} (n \operatorname{f} \operatorname{pc0})\\ \end{align}
This is a simpler definition but leads to a more complex expression for pred.The expansion for
\operatorname{pred}\operatorname{three}
\begin{align} \operatorname{pred}\operatorname{three}=& \operatorname{first} (\operatorname{f} (\operatorname{f} (\operatorname{f} (\operatorname{pair} \operatorname{zero} \operatorname{zero}))))\\ =& \operatorname{first} (\operatorname{f} (\operatorname{f} (\operatorname{pair} \operatorname{zero} \operatorname{one})))\\ =& \operatorname{first} (\operatorname{f} (\operatorname{pair} \operatorname{one} \operatorname{two}))\\ =& \operatorname{first} (\operatorname{pair} \operatorname{two} \operatorname{three})\\ =& \operatorname{two} \end{align}
Division of natural numbers may be implemented by,[3]
n/m=\operatorname{if} n\gem \operatorname{then} 1+(n-m)/m \operatorname{else} 0
Calculating
n-m
\operatorname{IsZero} (\operatorname{minus} n m)
n\lem
n<m
\operatorname{divide1} n m f x=(λd.\operatorname{IsZero} d (0 f x) (f (\operatorname{divide1} d m f x))) (\operatorname{minus} n m)
As desired, this definition has a single call to
\operatorname{minus} n m
(n-1)/m
This problem may be corrected by adding 1 to n before calling divide. The definition of divide is then,
\operatorname{divide} n=\operatorname{divide1} (\operatorname{succ} n)
divide1 is a recursive definition. The Y combinator may be used to implement the recursion. Create a new function called div by;
\operatorname{divide1} → \operatorname{div} c
\operatorname{divide1} → c
\operatorname{div}=λc.λn.λm.λf.λx.(λd.\operatorname{IsZero} d (0 f x) (f (c d m f x))) (\operatorname{minus} n m)
Then,
\operatorname{divide}=λn.\operatorname{divide1} (\operatorname{succ} n)
\begin{align} \operatorname{divide1}&=Y \operatorname{div}\\ \operatorname{succ}&=λn.λf.λx.f (n f x)\\ Y&=λf.(λx.f (x x)) (λx.f (x x))\\ 0&=λf.λx.x\\ \operatorname{IsZero}&=λn.n (λx.\operatorname{false}) \operatorname{true} \end{align}
\begin{align} \operatorname{true}&\equivλa.λb.a\\ \operatorname{false}&\equivλa.λb.b \end{align}
\begin{align} \operatorname{minus}&=λm.λn.n\operatorname{pred}m\\ \operatorname{pred}&=λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)\end{align}
\scriptstyle\operatorname{divide}=λn.((λf.(λx.x x) (λx.f (x x))) (λc.λn.λm.λf.λx.(λd.(λn.n (λx.(λa.λb.b)) (λa.λb.a)) d ((λf.λx.x) f x) (f (c d m f x))) ((λm.λn.n(λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u))m) n m))) ((λn.λf.λx.f (n f x)) n)
Or as text, using \ for, divide = (\n.((\f.(\x.x x) (\x.f (x x))) (\c.\n.\m.\f.\x.(\d.(\n.n (\x.(\a.\b.b)) (\a.\b.a)) d ((\f.\x.x) f x) (f (c d m f x))) ((\m.\n.n (\n.\f.\x.n (\g.\h.h (g f)) (\u.x) (\u.u)) m) n m))) ((\n.\f.\x. f (n f x)) n))
For example, 9/3 is represented by divide (\f.\x.f (f (f (f (f (f (f (f (f x))))))))) (\f.\x.f (f (f x)))
Using a lambda calculus calculator, the above expression reduces to 3, using normal order. \f.\x.f (f (f (x)))
One simple approach for extending Church Numerals to signed numbers is to use a Church pair, containing Church numerals representing a positive and a negative value.[4] The integer value is the difference between the two Church numerals.
A natural number is converted to a signed number by,
\operatorname{convert}s=λx.\operatorname{pair} x 0
Negation is performed by swapping the values.
\operatorname{neg}s=λx.\operatorname{pair} (\operatorname{second} x) (\operatorname{first} x)
The integer value is more naturally represented if one of the pair is zero. The OneZero function achieves this condition,
\operatorname{OneZero}=λx.\operatorname{IsZero} (\operatorname{first} x) x (\operatorname{IsZero} (\operatorname{second} x) x (\operatorname{OneZero} (\operatorname{pair} (\operatorname{pred} (\operatorname{first} x)) (\operatorname{pred} (\operatorname{second} x)))))
The recursion may be implemented using the Y combinator,
\operatorname{OneZ}=λc.λx.\operatorname{IsZero} (\operatorname{first} x) x (\operatorname{IsZero} (\operatorname{second} x) x (c (\operatorname{pair} (\operatorname{pred} (\operatorname{first} x)) (\operatorname{pred} (\operatorname{second} x)))))
\operatorname{OneZero}=Y\operatorname{OneZ}
Addition is defined mathematically on the pair by,
x+y=[xp,xn]+[yp,yn]=xp-xn+yp-yn=(xp+yp)-(xn+yn)=[xp+yp,xn+yn]
The last expression is translated into lambda calculus as,
\operatorname{plus}s=λx.λy.\operatorname{OneZero} (\operatorname{pair} (\operatorname{plus} (\operatorname{first} x) (\operatorname{first} y)) (\operatorname{plus} (\operatorname{second} x) (\operatorname{second} y)))
Similarly subtraction is defined,
x-y=[xp,xn]-[yp,yn]=xp-xn-yp+yn=(xp+yn)-(xn+yp)=[xp+yn,xn+yp]
giving,
\operatorname{minus}s=λx.λy.\operatorname{OneZero} (\operatorname{pair} (\operatorname{plus} (\operatorname{first} x) (\operatorname{second} y)) (\operatorname{plus} (\operatorname{second} x) (\operatorname{first} y)))
Multiplication may be defined by,
x*y=[xp,xn]*[yp,yn]=(xp-xn)*(yp-yn)=(xp*yp+xn*yn)-(xp*yn+xn*yp)=[xp*yp+xn*yn,xp*yn+xn*yp]
\operatorname{mult}s=λx.λy.\operatorname{pair} (\operatorname{plus} (\operatorname{mult} (\operatorname{first} x) (\operatorname{first} y)) (\operatorname{mult} (\operatorname{second} x) (\operatorname{second} y))) (\operatorname{plus} (\operatorname{mult} (\operatorname{first} x) (\operatorname{second} y)) (\operatorname{mult} (\operatorname{second} x) (\operatorname{first} y)))
A similar definition is given here for division, except in this definition, one value in each pair must be zero (see OneZero above). The divZ function allows us to ignore the value that has a zero component.
\operatorname{divZ}=λx.λy.\operatorname{IsZero} y 0 (\operatorname{divide} x y)
divZ is then used in the following formula, which is the same as for multiplication, but with mult replaced by divZ.
\operatorname{divide}s=λx.λy.\operatorname{pair} (\operatorname{plus} (\operatorname{divZ} (\operatorname{first} x) (\operatorname{first} y)) (\operatorname{divZ} (\operatorname{second} x) (\operatorname{second} y))) (\operatorname{plus} (\operatorname{divZ} (\operatorname{first} x) (\operatorname{second} y)) (\operatorname{divZ} (\operatorname{second} x) (\operatorname{first} y)))
Rational and computable real numbers may also be encoded in lambda calculus. Rational numbers may be encoded as a pair of signed numbers. Computable real numbers may be encoded by a limiting process that guarantees that the difference from the real value differs by a number which may be made as small as we need.[5] [6] The references given describe software that could, in theory, be translated into lambda calculus. Once real numbers are defined, complex numbers are naturally encoded as a pair of real numbers.
The data types and functions described above demonstrate that any data type or calculation may be encoded in lambda calculus. This is the Church–Turing thesis.
Most real-world languages have support for machine-native integers; the church and unchurch functions convert between nonnegative integers and their corresponding Church numerals. The functions are given here in Haskell, where the \
corresponds to the λ of Lambda calculus. Implementations in other languages are similar.
type Church a = (a -> a) -> a -> a
church :: Integer -> Church Integerchurch 0 = \f -> \x -> xchurch n = \f -> \x -> f (church (n-1) f x)
unchurch :: Church Integer -> Integerunchurch cn = cn (+ 1) 0
Church Booleans are the Church encoding of the Boolean values true and false. Some programming languages use these as an implementation model for Boolean arithmetic; examples are Smalltalk and Pico.
Boolean logic may be considered as a choice. The Church encoding of true and false are functions of two parameters:
The two definitions are known as Church Booleans:
\begin{align} \operatorname{true}&\equivλa.λb.a\\ \operatorname{false}&\equivλa.λb.b \end{align}
This definition allows predicates (i.e. functions returning logical values) to directly act as if-clauses. A function returning a Boolean, which is then applied to two parameters, returns either the first or the second parameter:
\operatorname{predicate-}x \operatorname{then-clause} \operatorname{else-clause}
Because true and false choose the first or second parameter they may be combined to provide logic operators. Note that there are multiple possible implementations of not.
\begin{align} \operatorname{and}&=λp.λq.p q p\\ \operatorname{or}&=λp.λq.p p q\\ \operatorname{not}1&=λp.λa.λb.p b a\\ \operatorname{not}2&=λp.p (λa.λb.b) (λa.λb.a)=λp.p\operatorname{false}\operatorname{true}\\ \operatorname{xor}&=λa.λb.a (\operatorname{not} b) b\\ \operatorname{if}&=λp.λa.λb.p a b \end{align}
Some examples:
\begin{align} \operatorname{and}\operatorname{true}\operatorname{false}&=(λp.λq.p q p) \operatorname{true} \operatorname{false}=\operatorname{true}\operatorname{false}\operatorname{true}=(λa.λb.a)\operatorname{false}\operatorname{true}=\operatorname{false}\\ \operatorname{or}\operatorname{true}\operatorname{false}&=(λp.λq.p p q) (λa.λb.a) (λa.λb.b)=(λa.λb.a) (λa.λb.a) (λa.λb.b)=(λa.λb.a)=\operatorname{true} \\ \operatorname{not}1 \operatorname{true}&=(λp.λa.λb.p b a)(λa.λb.a)=λa.λb.(λa.λb.a) b a=λa.λb.(λc.b) a=λa.λb.b=\operatorname{false}\\ \operatorname{not}2 \operatorname{true}&=(λp.p (λa.λb.b)(λa.λb.a))(λa.λb.a)=(λa.λb.a)(λa.λb.b)(λa.λb.a)=(λb.(λa.λb.b)) (λa.λb.a)=λa.λb.b=\operatorname{false}\end{align}
A predicate is a function that returns a Boolean value. The most fundamental predicate is
\operatorname{IsZero}
\operatorname{true}
0
\operatorname{false}
\operatorname{IsZero}=λn.n (λx.\operatorname{false}) \operatorname{true}
The following predicate tests whether the first argument is less-than-or-equal-to the second:
\operatorname{LEQ}=λm.λn.\operatorname{IsZero} (\operatorname{minus} m n)
Because of the identity,
x=y\equiv(x\ley\landy\lex)
\operatorname{EQ}=λm.λn.\operatorname{and} (\operatorname{LEQ} m n) (\operatorname{LEQ} n m)
See also: Cons.
Church pairs are the Church encoding of the pair (two-tuple) type. The pair is represented as a function that takes a function argument. When given its argument it will apply the argument to the two components of the pair. The definition in lambda calculus is,
\begin{align} \operatorname{pair}&\equivλx.λy.λz.z x y\\ \operatorname{first}&\equivλp.p (λx.λy.x)\\ \operatorname{second}&\equivλp.p (λx.λy.y)\end{align}
For example,
\begin{align} &\operatorname{first} (\operatorname{pair} a b)\\ =&(λp.p (λx.λy.x)) ((λx.λy.λz.z x y) a b)\\ =&(λp.p (λx.λy.x)) (λz.z a b)\\ =&(λz.z a b) (λx.λy.x)\\ =&(λx.λy.x) a b=a\end{align}
An (immutable) list is constructed from list nodes. The basic operations on the list are;
Function | Description | |
---|---|---|
nil | Construct an empty list. | |
isnil | Test if list is empty. | |
cons | Prepend a given value to a (possibly empty) list. | |
head | Get the first element of the list. | |
tail | Get the rest of the list. |
We give four different representations of lists below:
A nonempty list can be implemented by a Church pair;
However this does not give a representation of the empty list, because there is no "null" pointer. To represent null, the pair may be wrapped in another pair, giving three values:
Using this idea the basic list operations can be defined like this:[7]
Expression | Description | |
---|---|---|
\operatorname{nil}\equiv\operatorname{pair} \operatorname{true} \operatorname{true} | The first element of the pair is true meaning the list is null. | |
\operatorname{isnil}\equiv\operatorname{first} | Retrieve the null (or empty list) indicator. | |
\operatorname{cons}\equivλh.λt.\operatorname{pair}\operatorname{false} (\operatorname{pair}h t) | Create a list node, which is not null, and give it a head h and a tail t. | |
\operatorname{head}\equivλz.\operatorname{first} (\operatorname{second}z) | second.first is the head. | |
\operatorname{tail}\equivλz.\operatorname{second} (\operatorname{second}z) | second.second is the tail. |
In a nil node second is never accessed, provided that head and tail are only applied to nonempty lists.
Alternatively, define[8]
\begin{align} \operatorname{cons}&\equiv\operatorname{pair}\\ \operatorname{head}&\equiv\operatorname{first}\\ \operatorname{tail}&\equiv\operatorname{second}\\ \operatorname{nil}&\equiv\operatorname{false}\\ \operatorname{isnil}&\equivλl.l(λh.λt.λd.\operatorname{false})\operatorname{true}\end{align}
\operatorname{process-list}\equivλl.l(λh.λt.λd.\operatorname{head-and-tail-clause})\operatorname{nil-clause}
As an alternative to the encoding using Church pairs, a list can be encoded by identifying it with its right fold function. For example, a list of three elements x, y and z can be encoded by a higher-order function that when applied to a combinator c and a value n returns c x (c y (c z n)).
\begin{align} \operatorname{nil}&\equivλc.λn.n\\ \operatorname{isnil}&\equivλl.l (λh.λt.\operatorname{false}) \operatorname{true}\\ \operatorname{cons}&\equivλh.λt.λc.λn.c h (t c n)\\ \operatorname{head}&\equivλl.l (λh.λt.h) \operatorname{false}\\ \operatorname{tail}&\equivλl.λc.λn.l (λh.λt.λg.g h (t c)) (λt.n) (λh.λt.t) \end{align}
This list representation can be given type in System F.
An alternative representation is Scott encoding, which uses the idea of continuations and can lead to simpler code.[9] (see also Mogensen–Scott encoding).
In this approach, we use the fact that lists can be observed using pattern matching expression. For example, using Scala notation, if list
denotes a value of type List
with empty list Nil
and constructor Cons(h, t)
we can inspect the list and compute nilCode
in case the list is empty and when the list is not empty:
\operatorname{list} \operatorname{nilCode} \operatorname{consCode}
Let us denote by the parameter corresponding to and by the parameter corresponding to .The empty list is the one that returns the nil argument:
\operatorname{nil}\equivλn.λc. n
\operatorname{cons} h t \equiv λn.λc. c h t
More generally, an algebraic data type with
m
m
i
ni
ni
Scott encoding can be done in untyped lambda calculus, whereas its use with types requires a type system with recursion and type polymorphism. A list with element type E in this representation that is used to compute values of type C would have the following recursive type definition, where '=>' denotes function type:C
. A list generic in E
would also take E
as the type argument.
. Benjamin C. Pierce . . . 2002 . 500 . 978-0-262-16209-8.