Church–Turing–Deutsch principle explained

In computer science and quantum physics, the Church–Turing–Deutsch principle (CTD principle) is a stronger, physical form of the Church - Turing thesis formulated by David Deutsch in 1985.[1] The principle states that a universal computing device can simulate every physical process.

History

The principle was stated by Deutsch in 1985 with respect to finitary machines and processes. He observed that classical physics, which makes use of the concept of real numbers, cannot be simulated by a Turing machine, which can only represent computable reals. Deutsch proposed that quantum computers may actually obey the CTD principle, assuming that the laws of quantum physics can completely describe every physical process.

An earlier version of this thesis for classical computers was stated by Alan Turing's friend and student Robin Gandy in 1980.[2] [3]

A similar thesis was stated by Michael Freedman in an early review of topological quantum computing with Alexei Kitaev, Michael J. Larsen, and Zhenghan Wang, known as the Freedman-Church-Turing thesis:[4]

This thesis differs from the Church-Turing-Deutsch thesis insofar as it is a statement about computational complexity, and not computability.

See also

References

Further reading

External links

Notes and References

  1. Web site: Nielsen. Michael. Interesting problems: The Church–Turing–Deutsch Principle. 16 April 2004 . 10 May 2014.
  2. Gandy, R. (1980). Church’s thesis and principles for mechanisms. Studies in Logic and the Foundations of Mathematics (101), 123–148
  3. Kaznatcheev . Artem . Falsifiability and Gandy's variant of the Church-Turing thesis . Theory, Evolution, and Games Group Blog . 2014 . 23 July 2018.
  4. Freedman . Michael H. . Topological Quantum Computation . 2002-09-20 . Kitaev . Alexei . Larsen . Michael J. . Wang . Zhenghan. quant-ph/0101025 .