Charadriiformes Explained

Charadriiformes (from Charadrius, the type genus of family Charadriidae) is a diverse order of small to medium-large birds. It includes about 390 species and has members in all parts of the world. Most charadriiform birds live near water and eat invertebrates or other small animals; however, some are pelagic (seabirds), others frequent deserts, and a few are found in dense forest. Members of this group can also collectively be referred to as shorebirds.

Taxonomy, systematics and evolution

The order was formerly divided into three suborders:

The Sibley-Ahlquist taxonomy lumps all the Charadriiformes together with other seabirds and birds of prey into a greatly enlarged order Ciconiiformes. However, the resolution of the DNA-DNA hybridization technique used by Sibley & Ahlquist was not sufficient to properly resolve the relationships in this group, and indeed it appears as if the Charadriiformes constitute a single large and very distinctive lineage of modern birds of their own.[1]

The auks, usually considered distinct because of their peculiar morphology, are more likely related to gulls, the "distinctness" being a result of adaptation for diving.[2]

Families

The order Charadriiformes contains 3 suborders, 19 families and 391 species.

Evolutionary history

That the Charadriiformes are an ancient group is also borne out by the fossil record. Alongside the Anseriformes, the Charadriiformes are the only other order of modern bird to have an established fossil record within the late Cretaceous, alongside the other dinosaurs.[3] Much of the Neornithes' fossil record around the Cretaceous–Paleogene extinction event is made up of bits and pieces of birds which resemble this order. In many, this is probably due to convergent evolution brought about by semiaquatic habits. Specimen VI 9901 (López de Bertodano Formation, Late Cretaceous of Vega Island, Antarctica) is probably a basal charadriiform somewhat reminiscent of a thick-knee.[4] However, more complete remains of undisputed charadriiforms are known only from the mid-Paleogene onwards. Present-day orders emerged around the Eocene-Oligocene boundary, roughly 35-30 mya. Basal or unresolved charadriiforms are:

The "transitional shorebirds" ("Graculavidae") are a generally Mesozoic form taxon formerly believed to constitute the common ancestors of charadriiforms, waterfowl and flamingos. They are now assumed to be mostly basal taxa of the charadriiforms and/or "higher waterbirds", which probably were two distinct lineages 65 mya already,[9] and few if any are still believed to be related to the well-distinct waterfowl. Taxa formerly considered graculavids are:

Other wader- or gull-like birds incertae sedis, which may or may not be Charadriiformes, are:

Evolution of parental care in Charadriiformes

Shorebirds pursue a larger diversity of parental care strategies than do most other avian orders. They therefore present an attractive set of examples to support the understanding of the evolution of parental care in avians generally.[11] The ancestral avian most likely had a female parental care system.[12] The shorebird ancestor specifically evolved from a bi-parental care system, yet the species within the clade Scolopacidae evolved from a male parental care system. These transitions might have occurred for several reasons. Brooding density is correlated with male parental care. Male care systems in birds are shown to have a very low breeding density while female care systems in birds have a high breeding density. (Owens 2005). Certain rates of male and female mortality, male and female egg maturation rate, and egg death rate have been associated with particular systems as well.[13] It has also been shown that sex role reversal is motivated by the male-biased adult sex ratio.[14] The reason for such diversity in shorebirds, compared to other birds, has yet to be understood.

See also

References

Notes and References

  1. Fain & Houde (2004)
  2. Ericson et al. (2003), Paton et al. (2003), Thomas et al. (2004a,b), van Tuinen et al. (2004), Paton & Baker (2006)
  3. Baker . Allan J . Pereira . Sérgio L . Paton . Tara A . 2007-04-22 . Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds . Biology Letters . en . 3 . 2 . 205–210 . 10.1098/rsbl.2006.0606 . 1744-9561 . 2375939 . 17284401.
  4. Case, J. A. and C. P. Tambussi. 1999. Maastrichtian record of neornithine birds in Antarctica: comments on a Late Cretaceous radiation
  5. [Anatomical terms of location#Proximal and distal|Proximal]
  6. Several wing and thorax bones of a bird the size of a double-banded plover: Worthy et al. (2007)
  7. Premaxillae (MNZ S42681, S42736) and proximal right scapula (MNZ S41058) of a bird apparently similar to the black-billed gull but almost the size of a kelp gull: Worthy et al. (2007)
  8. Gál et al. (1998-99)
  9. Hope . Sylvia . 4 June 1996 . A New Species of Graculavus from the Cretaceous of Wyoming (Aves: Neornithes) . Smithsonian Contributions to Paleobiology . 89 . 261–266 . 10.5479/SI.00810266.89.1 . 140700031 . 23 February 2024 . 8 May 2024 . https://web.archive.org/web/20240508160900/https://www.biodiversitylibrary.org/bibliography/159019 . live .
  10. A wading bird the size of a white stork (Ciconia ciconia): Bourdon (2005)
  11. Book: Thomas . Gavin H. . Székely . Tamás . Reynolds . John D. . Advances in the Study of Behavior . Sexual Conflict and the Evolution of Breeding Systems in Shorebirds . Elsevier . 2007 . 0065-3454 . 10.1016/s0065-3454(07)37006-x . 37. 279–342. 9780120045372 .
  12. Tullberg, B. S., M. Ah–King and H. Temrin. 2002. Phylogenetic reconstruction of parental–care systems in the ancestors of birds. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 357: 251–257.
  13. Klug, H., M. B. Bonsall, and S.H Alonzo. 2013. Sex differences in life history drive evolutionary transitions among maternal, paternal, and bi-parental care. Ecology and Evolution. 3: 792–806.
  14. Liker, A., R. P. Freckleton, and T. Székely. 2013. The evolution of sex roles in birds is related to adult sex ratio. Nature Communications. 4: 1587.