Caputo fractional derivative explained

In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.[1]

Motivation

The Caputo fractional derivative is motivated from the Riemann–Liouville fractional integral. Let f be continuous on

\left(0,infty\right)

, then the Riemann–Liouville fractional integral states that

\left[f\left(x \right) \right] = \frac \cdot \int\limits_^ \frac \, \operatornamet

where \Gamma\left(\cdot \right) is the Gamma function.

Let's define \operatorname_^ := \frac, say that \operatorname_^ \operatorname_^ = \operatorname_^ and that \operatorname_^ = applies. If \alpha = m + z \in \mathbb \wedge m \in \mathbb_ \wedge 0 < z < 1 then we could say \operatorname_^ = \operatorname_^ = \operatorname_^ = \operatorname_^ = \operatorname_^\operatorname_^ = _^\operatorname_^. So if

f

is also

Cm\left(0,infty\right)

, then

\left[f\left(x \right) \right] = \frac \cdot \int\limits_^ \frac \, \operatornamet.

This is known as the Caputo-type fractional derivative, often written as _^.

Definition

The first definition of the Caputo-type fractional derivative was given by Caputo as:

\left[f\left(x \right) \right] = \frac \cdot \int\limits_^ \frac \, \operatornamet

where

Cm\left(0,infty\right)

and m \in \mathbb_ \wedge 0 < z < 1.[2]

A popular equivalent definition is:

\left[f\left(x \right) \right] = \frac \cdot \int\limits_^ \frac\, \operatornamet

where \alpha \in \mathbb_ \setminus \mathbb and \left\lceil \cdot \right\rceil is the ceiling function. This can be derived by substituting \alpha = m + z so that \left\lceil \alpha \right\rceil = m + 1 would apply and \left\lceil \alpha \right\rceil + z = \alpha + 1 follows.[3]

Another popular equivalent definition is given by:

\left[f\left(x \right) \right] = \frac \cdot \int\limits_^ \frac\, \operatornamet

where n - 1 < \alpha < n \in \mathbb. .

The problem with these definitions is that they only allow arguments in \left(0,\, \infty \right). This can be fixed by replacing the lower integral limit with a: \left[f\left(x \right) \right] = \frac \cdot \int\limits_^ \frac\, \operatornamet. The new domain is \left(a,\, \infty \right).[4]

Properties and theorems

Basic properties and theorems

A few basic properties are:[5]

A table of basic properties and theorems!Properties!

f\left(x\right)

!
C
{
a
\alpha
\operatorname{D}
x
}\left[f\left(x \right) \right]!Condition
Definition

f\left(x\right)

f\left(\left(x\right)-f\left(\left(a\right)

Linearity

bg\left(x\right)+ch\left(x\right)

b

C
{
a
\alpha
\operatorname{D}
x
}\left[g\left(x \right) \right] + c \cdot \left[h\left(x \right) \right]
Index law
\beta
\operatorname{D}
x
C
{
a
\alpha+\beta
\operatorname{D}
x
}

\beta\inZ

Semigroup property
C
{
a
\beta
\operatorname{D}
x
}
C
{
a
\alpha+\beta
\operatorname{D}
x
}

\left\lceil\alpha\right\rceil=\left\lceil\beta\right\rceil

Non-commutation

The index law does not always fulfill the property of commutation:

\operatorname_^\operatorname_^ = \operatorname_^ \ne \operatorname_^\operatorname_^

where

\alpha\inR>\setminusN\wedge\beta\inN

.

Fractional Leibniz rule

The Leibniz rule for the Caputo fractional derivative is given by:

\operatorname_^\left[g\left(x \right) \cdot h\left(x \right) \right] = \sum\limits_^\left[\binom{a}{k} \cdot g^{\left(k \right)}\left(x \right) \cdot \operatorname{_{a}^{\text{RL}}D}_{x}^{\alpha - k}\left[ h\left(x \right) \right] \right] - \frac \cdot g\left(a \right) \cdot h\left(a \right)

where \binom = \frac is the binomial coefficient.[6] [7]

Relation to other fractional differential operators

Caputo-type fractional derivative is closely related to the Riemann–Liouville fractional integral via its definition:

\left[f\left(x \right) \right] = \left[\operatorname{D}_{x}^{\left\lceil \alpha \right\rceil}\left[ f\left(x \right) \right] \right]

Furthermore, the following relation applies:

\left[f\left(x \right) \right] = \left[f\left(x \right) \right] - \sum\limits_^\left[\frac{x^{k - \alpha}}{\Gamma\left(k - \alpha + 1 \right)} \cdot f^{\left(k \right)}\left(0 \right) \right]

where

RL
{
a
\alpha
\operatorname{D}
x
} is the Riemann–Liouville fractional derivative.

Laplace transform

The Laplace transform of the Caputo-type fractional derivative is given by:

\mathcal_\left\\left(s \right) = s^ \cdot F\left(s \right) - \sum\limits_^\left[s^{\alpha - k - 1} \cdot f^{\left(k \right)}\left(0 \right) \right]

where \mathcal_\left\\left(s \right) = F\left(s \right).[8]

Caputo fractional derivative of some functions

The Caputo fractional derivative of a constant

c

is given by:

\begin\left[c \right] &= \frac \cdot \int\limits_^ \frac\, \operatornamet = \frac \cdot \int\limits_^ \frac\, \operatornamet\\\left[c \right] &= 0\end

The Caputo fractional derivative of a power function

xb

is given by:[9]

\begin\left[x^{b} \right] &= \left[\operatorname{D}_{x}^{\left\lceil \alpha \right\rceil}\left[ x^{b} \right] \right] = \frac \cdot \left[x^{b - \left\lceil \alpha \right\rceil} \right]\\ \left[x^{b} \right] &= \begin \frac \left(x^ - a^ \right),\, &\text \left\lceil \alpha \right\rceil - 1 < b \wedge b \in \mathbb\\ 0,\, &\text \left\lceil \alpha \right\rceil - 1 \geq b \wedge b \in \mathbb\\ \end\end

The Caputo fractional derivative of a exponential function

ea

is given by:

\begin\left[e^{b \cdot x} \right] &= \left[\operatorname{D}_{x}^{\left\lceil \alpha \right\rceil}\left[ e^{b \cdot x} \right] \right] = b^ \cdot \left[e^{b \cdot x} \right]\\\left[e^{b \cdot x} \right] &= b^ \cdot \left(E_\left(\left\lceil \alpha \right\rceil - \alpha,\, b \right) - E_\left(\left\lceil \alpha \right\rceil - \alpha,\, b \right) \right)\\\end

where E_\left(\nu,\, a \right) = \frac is the \operatorname_-function and \gamma \left(a,\, b \right) is the lower incomplete gamma function.[10]

Further reading

Notes and References

  1. Book: Diethelm, Kai . Fractional Differential Equations . 2019 . General theory of Caputo-type fractional differential equations . 1–20 . 10.1515/9783110571660-001 . 978-3-11-057166-0 . https://opus4.kobv.de/opus4-fhws/frontdoor/index/index/year/2023/docId/3212 . 2023-08-10.
  2. Caputo . Michele . 1967 . Linear Models of Dissipation whose Q is almost Frequency Independent-II . ResearchGate . 13 . 5 . 530. 10.1111/j.1365-246X.1967.tb02303.x . free . 1967GeoJ...13..529C .
  3. Lazarević . Mihailo . Rapaić . Milan Rade . Šekara . Tomislav . 2014 . Introduction to Fractional Calculus with Brief Historical Background . ResearchGate . 8.
  4. Dimitrov . Yuri . Georgiev . Slavi . Todorov . Venelin . 2023 . Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations . Fractal and Fractional. 7 . 10 . 750 . 10.3390/fractalfract7100750 . free .
  5. Sikora . Beata . 2023 . Remarks on the Caputo fractional derivative . Matematyka I Informatyka Na Uczelniach Technicznych . 5 . 78–79.
  6. Huseynov . Ismail . Ahmadova . Arzu . Mahmudov . Nazim . 2020 . Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications . ResearchGate . 1. 2012.11360 .
  7. Web site: Weisstein . Eric W. . 2024 . Binomial Coefficient . 2024-05-20 . mathworld.wolfram.com . en.
  8. Sontakke . Bhausaheb Rajba . Shaikh . Amjad . 2015 . Properties of Caputo Operator and Its Applications to Linear Fractional Differential Equations . Journal of Engineering Research and Applications . 5 . 5 . 23–24 . 2248-9622.
  9. Web site: Weisstein . Eric W. . Fractional Derivative . 2024-05-20 . mathworld.wolfram.com . en.
  10. Web site: Weisstein . Eric W. . 2024 . E_t-Function . 2024-05-20 . mathworld.wolfram.com . en.