CD5 (protein) explained
CD5[1] is a cluster of differentiation expressed on the surface of T cells (various species) and in a subset of murine B cells known as B-1a. The expression of this receptor in human B cells has been a controversial topic and to date there is no consensus regarding the role of this receptor as a marker of human B cells. B-1 cells have limited diversity of their B-cell receptor due to their lack of the enzyme terminal deoxynucleotidyl transferase (TdT) and are potentially self-reactive. CD5 serves to mitigate activating signals from the BCR so that the B-1 cells can only be activated by very strong stimuli (such as bacterial proteins) and not by normal tissue proteins. CD5 was used as a T-cell marker until monoclonal antibodies against CD3 were developed.
In humans, the gene is located on the long arm of chromosome 11. There is no confirmed ligand for CD5 but there is evidence that CD72, a C-type lectin, may be a ligand or that CD5 may be homophilic, binding CD5 on the surface of other cells.[2] CD5 includes a scavenger receptor cysteine-rich protein domain.
T cells express higher levels of CD5 than B cells. CD5 is upregulated on T cells upon strong activation. In the thymus, there is a correlation with CD5 expression and strength of the interaction of the T cell towards self-peptides.
Immunohistochemistry
CD5 is a good immunohistochemical marker for T-cells, although not as sensitive as CD3. About 76% of T-cell neoplasms are reported to express CD5, and it is also found in chronic lymphocytic leukemia and mantle cell lymphoma (both being B cell malignancies), that do not express CD3. It is commonly lost in cutaneous T-cell lymphoma, and its absence can be used as an indicator of malignancy in this condition. The absence of CD5 in T cell acute lymphoblastic leukemia, while relatively rare, is associated with a poor prognosis.
Further reading
- Berland R, Wortis HH . Origins and functions of B-1 cells with notes on the role of CD5 . Annual Review of Immunology . 20 . 253–300 . 2002 . 11861604 . 10.1146/annurev.immunol.20.100301.064833 .
- Osman N, Ley SC, Crumpton MJ . Evidence for an association between the T cell receptor/CD3 antigen complex and the CD5 antigen in human T lymphocytes . European Journal of Immunology . 22 . 11 . 2995–3000 . November 1992 . 1385158 . 10.1002/eji.1830221135 . 34625072 .
- Van de Velde H, von Hoegen I, Luo W, Parnes JR, Thielemans K . The B-cell surface protein CD72/Lyb-2 is the ligand for CD5 . Nature . 351 . 6328 . 662–665 . June 1991 . 1711157 . 10.1038/351662a0 . 4342866 . 1991Natur.351..662D .
- Jones NH, Clabby ML, Dialynas DP, Huang HJ, Herzenberg LA, Strominger JL . Isolation of complementary DNA clones encoding the human lymphocyte glycoprotein T1/Leu-1 . Nature . 323 . 6086 . 346–349 . 1986 . 3093892 . 10.1038/323346a0 . 4361866 . 1986Natur.323..346J .
- Lankester AC, van Schijndel GM, Cordell JL, van Noesel CJ, van Lier RA . CD5 is associated with the human B cell antigen receptor complex . European Journal of Immunology . 24 . 4 . 812–816 . April 1994 . 7512031 . 10.1002/eji.1830240406 . 25093082 .
- Raab M, Yamamoto M, Rudd CE . The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck . Molecular and Cellular Biology . 14 . 5 . 2862–2870 . May 1994 . 7513045 . 358654 . 10.1128/mcb.14.5.2862 .
- Dianzani U, Bragardo M, Buonfiglio D, Redoglia V, Funaro A, Portoles P, Rojo J, Malavasi F, Pileri A . Modulation of CD4 lateral interaction with lymphocyte surface molecules induced by HIV-1 gp120 . European Journal of Immunology . 25 . 5 . 1306–1311 . May 1995 . 7539755 . 10.1002/eji.1830250526 . 37717142 .
- Van de Velde H, Thielemans K . Native soluble CD5 delivers a costimulatory signal to resting human B lymphocytes . Cellular Immunology . 172 . 1 . 84–91 . August 1996 . 8806810 . 10.1006/cimm.1996.0218 .
- Dennehy KM, Broszeit R, Garnett D, Durrheim GA, Spruyt LL, Beyers AD . Thymocyte activation induces the association of phosphatidylinositol 3-kinase and pp120 with CD5 . European Journal of Immunology . 27 . 3 . 679–686 . March 1997 . 9079809 . 10.1002/eji.1830270316 . 41540340 .
- Gary-Gouy H, Lang V, Sarun S, Boumsell L, Bismuth G . In vivo association of CD5 with tyrosine-phosphorylated ZAP-70 and p21 phospho-zeta molecules in human CD3+ thymocytes . Journal of Immunology . 159 . 8 . 3739–3747 . October 1997 . 9378960 . 10.4049/jimmunol.159.8.3739 . 42470132 .
- Dennehy KM, Broszeit R, Ferris WF, Beyers AD . Thymocyte activation induces the association of the proto-oncoprotein c-cbl and ras GTPase-activating protein with CD5 . European Journal of Immunology . 28 . 5 . 1617–1625 . May 1998 . 9603468 . 10.1002/(SICI)1521-4141(199805)28:05<1617::AID-IMMU1617>3.0.CO;2-7 . free .
- Bauch A, Campbell KS, Reth M . Interaction of the CD5 cytoplasmic domain with the Ca2+/calmodulin-dependent kinase IIdelta . European Journal of Immunology . 28 . 7 . 2167–2177 . July 1998 . 9692886 . 10.1002/(SICI)1521-4141(199807)28:07<2167::AID-IMMU2167>3.0.CO;2-L . free .
- Calvo J, Vildà JM, Places L, Simarro M, Padilla O, Andreu D, Campbell KS, Aussel C, Lozano F . Human CD5 signaling and constitutive phosphorylation of C-terminal serine residues by casein kinase II . Journal of Immunology . 161 . 11 . 6022–6029 . December 1998 . 9834084 . 10.4049/jimmunol.161.11.6022 . 24141284 . free .
- McAlister MS, Davis B, Pfuhl M, Driscoll PC . NMR analysis of the N-terminal SRCR domain of human CD5: engineering of a glycoprotein for superior characteristics in NMR experiments . Protein Engineering . 11 . 10 . 847–853 . October 1998 . 9862202 . 10.1093/protein/11.10.847 . free .
- Perez-Villar JJ, Whitney GS, Bowen MA, Hewgill DH, Aruffo AA, Kanner SB . CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1 . Molecular and Cellular Biology . 19 . 4 . 2903–2912 . April 1999 . 10082557 . 84084 . 10.1128/mcb.19.4.2903 .
- Carmo AM, Castro MA, Arosa FA . CD2 and CD3 associate independently with CD5 and differentially regulate signaling through CD5 in Jurkat T cells . Journal of Immunology . 163 . 8 . 4238–4245 . October 1999 . 10510361 . 10.4049/jimmunol.163.8.4238 . 21192459 . free .
- Vilà JM, Calvo J, Places L, Padilla O, Arman M, Gimferrer I, Aussel C, Vives J, Lozano F . Role of two conserved cytoplasmic threonine residues (T410 and T412) in CD5 signaling . Journal of Immunology . 166 . 1 . 396–402 . January 2001 . 11123317 . 10.4049/jimmunol.166.1.396 . free .
- Vilà JM, Gimferrer I, Padilla O, Arman M, Places L, Simarro M, Vives J, Lozano F . Residues Y429 and Y463 of the human CD5 are targeted by protein tyrosine kinases . European Journal of Immunology . 31 . 4 . 1191–1198 . April 2001 . 11298344 . 10.1002/1521-4141(200104)31:4<1191::AID-IMMU1191>3.0.CO;2-H . free .
- Kirchgessner H, Dietrich J, Scherer J, Isomäki P, Korinek V, Hilgert I, Bruyns E, Leo A, Cope AP, Schraven B . The transmembrane adaptor protein TRIM regulates T cell receptor (TCR) expression and TCR-mediated signaling via an association with the TCR zeta chain . The Journal of Experimental Medicine . 193 . 11 . 1269–1284 . June 2001 . 11390434 . 2193385 . 10.1084/jem.193.11.1269 .
- Gary-Gouy H, Harriague J, Dalloul A, Donnadieu E, Bismuth G . CD5-negative regulation of B cell receptor signaling pathways originates from tyrosine residue Y429 outside an immunoreceptor tyrosine-based inhibitory motif . Journal of Immunology . 168 . 1 . 232–239 . January 2002 . 11751967 . 10.4049/jimmunol.168.1.232 . free .
- Mier-Aguilar CA, Vega-Baray B, Burgueño-Bucio E, Lozano F, García-Zepeda EA, Raman C, Soldevila G . Functional requirement of tyrosine residue 429 within CD5 cytoplasmic domain for regulation of T cell activation and survival . Biochemical and Biophysical Research Communications . 466 . 3 . 381–387 . October 2015 . 26363459 . 10.1016/j.bbrc.2015.09.033 .
Notes and References
- Web site: Entrez Gene: CD5 CD5 molecule.
- Brown MH, Lacey E . A ligand for CD5 is CD5 . Journal of Immunology . 185 . 10 . 6068–6074 . November 2010 . 20952682 . 2996635 . 10.4049/jimmunol.0903823 . 52052893 . dmy-all . 1778718 . 1550-6606 .