Brain morphometry is a subfield of both morphometry and the brain sciences, concerned with the measurement of brain structures and changes thereof during development, aging, learning, disease and evolution. Since autopsy-like dissection is generally impossible on living brains, brain morphometry starts with noninvasive neuroimaging data, typically obtained from magnetic resonance imaging (MRI). These data are born digital, which allows researchers to analyze the brain images further by using advanced mathematical and statistical methods such as shape quantification or multivariate analysis. This allows researchers to quantify anatomical features of the brain in terms of shape, mass, volume (e.g. of the hippocampus, or of the primary versus secondary visual cortex), and to derive more specific information, such as the encephalization quotient, grey matter density and white matter connectivity, gyrification, cortical thickness, or the amount of cerebrospinal fluid. These variables can then be mapped within the brain volume or on the brain surface, providing a convenient way to assess their pattern and extent over time, across individuals or even between different biological species. The field is rapidly evolving along with neuroimaging techniques - which deliver the underlying data - but also develops in part independently from them, as part of the emerging field of neuroinformatics, which is concerned with developing and adapting algorithms to analyze those data.
The term brain mapping is often used interchangeably with brain morphometry, although mapping in the narrower sense of projecting properties of the brain onto a template brain is, strictly speaking, only a subfield of brain morphometry. On the other hand, though much more rarely, neuromorphometry is also sometimes used as a synonym for brain morphometry (particularly in the earlier literature, e.g. Haug 1986), though technically is only one of its subfields.
The morphology and function of a complex organ like the brain are the result of numerous biochemical and biophysical processes interacting in a highly complex manner across multiple scales in space and time (Vallender et al., 2008). Most of the genes known to control these processes during brain development, maturation and aging are highly conserved (Holland, 2003), though some show polymorphisms (cf. Meda et al., 2008), and pronounced differences at the cognitive level abound even amongst closely related species, or between individuals within a species (Roth and Dicke, 2005).
In contrast, variations in macroscopic brain anatomy (i.e., at a level of detail still discernible by the naked human eye) are sufficiently conserved to allow for comparative analyses, yet diverse enough to reflect variations within and between individuals and species: As morphological analyses that compare brains at different onto-genetic or pathogenic stages can reveal important information about the progression of normal or abnormal development within a given species, cross-species comparative studies have a similar potential to reveal evolutionary trends and phylogenetic relationships.
Given that the imaging modalities commonly employed for brain morphometric investigations are essentially of a molecular or even sub-atomic nature, a number of factors may interfere withderived quantification of brain structures. These include all of the parameters mentioned in "Applications" but also the state of hydration, hormonal status, medication and substance abuse.
There are two major prerequisites for brain morphometry: First, the brain features of interest must be measurable, and second, statistical methods have to be in place to compare the measurements quantitatively. Shape feature comparisons form the basis of Linnaean taxonomy, and even in cases of convergent evolution or brain disorders, they still provide a wealth of information about the nature of the processes involved. Shape comparisons have long been constrained to simple and mainly volume- or slice-based measures but profited enormously from the digital revolution, as now all sorts of shapes in any number of dimensions can be handled numerically.
In addition, though the extraction of morphometric parameters like brain mass or liquor volume may be relatively straightforward in post mortem samples, most studies in living subjects will by necessity have to use an indirect approach: A spatial representation of the brain or its components is obtained by some appropriate neuroimaging technique, and the parameters of interest can then be analyzed on that basis. Such a structural representation of the brain is also a prerequisite for the interpretation of functional neuroimaging.
The design of a brain morphometric study depends on multiple factors that can be roughly categorized as follows: First, depending on whether ontogenetic, pathological or phylogenetic issues are targeted, the study can be designed as longitudinal (within the same brain, measured at different times), or cross-sectional (across brains). Second, brain image data can be acquired using different neuroimaging modalities. Third, brain properties can be analyzed at different scales (e.g. in the whole brain, regions of interest, cortical or subcortical structures). Fourth, the data can be subjected to different kinds of processing and analysis steps. Brain morphometry as a discipline is mainly concerned with the development of tools addressing this fourth point and integration with the previous ones.
With the exception of the usually slice-based histology of the brain, neuroimaging data are generally stored as matrices of voxels. The most popular morphometric method, thus, is known as Voxel-based morphometry (VBM; cf. Wright et al., 1995; Ashburner and Friston, 2000; Good et al., 2001). Yet as an imaging voxel is not a biologically meaningful unit, other approaches have been developed that potentially bear a closer correspondence to biological structures: Deformation-based morphometry (DBM), surface-based morphometry (SBM) and fiber tracking based on diffusion-weighted imaging (DTI or DSI). All four are usually performed based on Magnetic Resonance (MR) imaging data, with the former three commonly using T1-weighted (e.g. Magnetization Prepared Rapid Gradient Echo, MP-RAGE) and sometimes T2-weighted pulse sequences, while DTI/DSI use diffusion-weighted ones. However, recent evaluation of morphometry algorithms/software demonstrates inconsistency among several of them.[1] This renders a need for systematic and quantitative validation and evaluation of the field.
See main article: Magnetic Resonance Imaging.
See main article: Image registration. MR images are generated by a complex interaction between static and dynamic electromagnetic fields and the tissue of interest, namely the brain that is encapsulated in the head of the subject. Hence, the raw images contain noise from various sources—namely head movements (a scan suitable for morphometry typically takes on the order of 10 min) that can hardly be corrected or modeled, and bias fields (neither of the electromagnetic fields involved is homogeneous across the whole head nor brain) which can be modeled.
In the following, the image is segmented into non-brain and brain tissue, with the latter usually being sub-segmented into at least gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Sinceimage voxels near the class boundaries do not generally contain just one kind of tissue, partial volume effects ensue that can be corrected for.
For comparisons across different scans (within or across subjects), differences in brain size and shape are eliminated by spatially normalizing (i.e. registering) the individual images to the stereotactic space of a template brain.Registration can be performed using low-resolution (i.e. rigid-body or affine transformations) or high-resolution (i.e. highly non-linear) methods, and templates can be generated from the study's pool of brains, from a brain atlas or a derived template generator.
Both the registered images and the deformation fields generated upon registration can be used for morphometric analyses, thereby providing the basis for Voxel-Based Morphometry (VBM) and Deformation-Based Morphometry (DBM). Images segmented into tissue classes can also be used to convert segmentation boundaries into parametric surfaces, the analysis of which is the focus of Surface-Based Morphometry (SBM).
See main article: Voxel-based morphometry. After the individual images are segmented, they are registered to the template. Each voxel then contains a measure of the probability, according to which it belongs to a specific segmentation class. For gray matter, this quantity is usually referred to as gray matter density (GMD) or gray matter concentration (GMC), or gray matter probability (GMP).
In order to correct for the volume changes due to the registration, the gray matter volume (GMV) in the original brain can be calculated by multiplying the GMD with the Jacobian determinants of the deformations used to register the brain to the template. Class-specific volumes for WM and CSF are defined analogously.
The local differences in the density or volume of the different segmentation classes can then be statistically analyzed across scans and interpreted in anatomical terms (e.g. as gray matter atrophy). Since VBM is available for many of the major neuroimaging software packages (e.g. FSL and SPM), it provides an efficient tool to test or generate specific hypotheses about brain changes over time. It is noteworthy, that unlike DBM, considerable criticism and words of caution regarding the correct interpretation of VBM results has been leveled by the medical image computing community [2] [3]
In DBM, highly non-linear registration algorithms are used, and the statistical analyses are not performed on the registered voxels but on the deformation fields used to register them [4] (which requires multivariate approaches) or derived scalar properties thereof, which allows for univariate approaches [5] . One common variant—sometimes referred to as Tensor-based morphometry (TBM) - is based on the Jacobian determinant of the deformation matrix.
Of course, multiple solutions exist for such non-linear warping procedures, and to balance appropriately between the potentially opposing requirements for global and local shape fit, ever more sophisticated registration algorithms are being developed. Most of these, however, are computationally expensive if applied with a high-resolution grid. The biggest advantage of DBM with respect to VBM is its ability to detect subtle changes in longitudinal studies. However, due to the vast variety of registration algorithms, no widely accepted standard for DBM exists, which also prevented its incorporation into major neuroimaging software packages.
Pattern based morphometry (PBM) is a method of brain morphometry first put forth in PBM.[6] It builds upon DBM and VBM. PBM is based on the application of sparse dictionary learning to morphometry. As opposed to typical voxel based approaches which depend on univariate statistical tests at specific voxel locations, PBM extracts multivariate patterns directly from the entire image. The advantage of this is that the inferences are not made locally as in VBM or DBM but globally. This allows the method to detect if combinations of voxels are better suited to separate the groups being studied rather than single voxels. Also the method is more robust to variations in the underlying registration algorithms as compared to typical DBM analysis
Once the brain is segmented, the boundary between different classes of tissue can be reconstructed as a surface on which morphometric analysis can proceed (e.g. towards gyrification), or onto which results of such analyses can be projected.
Nerve fiber-tracking techniques are the latest offspring of this suite of MR-based morphological approaches. They determine the tract of nerve fibers within the brain by means of diffusion tensor imaging or diffusion-spectrum imaging (e.g. Douaud et al., 2007 and O'Donnell et al., 2009).
Diffeomorphometry[7] is the focus on comparison of shapes and forms with a metric structure based on diffeomorphisms, and is central to the field of computational anatomy.[8] Diffeomorphic registration,[9] introduced in the 90's, is now an important player that uses computational procedures for constructing correspondences between coordinate systems based on sparse features and dense images, such as ANTS,[10] DARTEL,[11] DEMONS,[12] LDDMM,[13] or StationaryLDDMM.[14] Voxel-based morphometry (VBM) is an important method built on many of these principles. Methods based on diffeomorphic flows are used in For example, deformations could be diffeomorphisms of the ambient space, resulting in the LDDMM (Large Deformation Diffeomorphic Metric Mapping) framework for shape comparison.[15] One such deformation is the right invariant metric of computational anatomy which generalizes the metric of non-compressible Eulerian flows to include the Sobolev norm, ensuring smoothness of the flows.[16] Metrics have also been defined that are associated to Hamiltonian controls of diffeomorphic flows.[17]
The qualitatively largest changes within an individual generally occur during early development and more subtle ones during aging and learning, while pathological changes can vary highly in their extent and interindividual differences increase both during and across lifetimes. The above-described morphometric methods provide the means to analyze such changes quantitatively, and MR imaging has been applied to ever more brain populations relevant to these time scales, both within humans and across species.Currently, however, most applications of MR-based brain morphometry have a clinical focus, i.e. they help to diagnose and monitor neuropsychiatric disorders, in particular neurodegenerative diseases (like Alzheimer) or psychotic disorders (like schizophrenia).
See main article: Brain development. MR imaging is rarely performed during pregnancy and the neonatal period, in order to avoid stress for mother and child. In the cases of birth complications and other clinical events, however, such data are being acquired. For instance, Dubois et al., 2008 analyzed gyrification in premature newborns at birth and found it to be predictive of a functional score at term-equivalent age, and Serag et al.[18] built a 4D atlas of the developing neonatal brain which has led to the construction of brain growth curves from 28–44 weeks’ postmenstrual age. Beyond preterms, there have been a number of large-scale longitudinal MR-morphometric studies (often combined with cross-sectional approaches and other neuroimaging modalities) of normal brain development in humans.[19] Using voxel-based and a number of complementary approaches, these studies revealed (or non-invasively confirmed, from the perspective of previous histological studies which cannot be longitudinal) that brain maturation involves differential growth of gray and white matter, that the time course of the maturation is not linear and that it differs markedly across brain regions.[20]