Borel measure explained

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets).[1] Some authors require additional restrictions on the measure, as described below.

Formal definition

Let

X

be a locally compact Hausdorff space, and let

ak{B}(X)

be the smallest σ-algebra that contains the open sets of

X

; this is known as the σ-algebra of Borel sets. A Borel measure is any measure

\mu

defined on the σ-algebra of Borel sets.[2] A few authors require in addition that

\mu

is locally finite, meaning that every point has an open neighborhood with finite measure. For Hausdorff spaces, this implies that

\mu(C)<infty

for every compact set

C

, and for locally compact, Hausdorff spaces, the two conditions are equivalent. If a Borel measure

\mu

is both inner regular and outer regular, it is called a regular Borel measure. If

\mu

is both inner regular, outer regular, and locally finite, it is called a Radon measure.

On the real line

R

with its usual topology is a locally compact Hausdorff space; hence we can define a Borel measure on it. In this case,

ak{B}(R)

is the smallest σ-algebra that contains the open intervals of

R

. While there are many Borel measures μ, the choice of Borel measure that assigns

\mu((a,b])=b-a

for every half-open interval

(a,b]

is sometimes called "the" Borel measure on

R

. This measure turns out to be the restriction to the Borel σ-algebra of the Lebesgue measure

λ

, which is a complete measure and is defined on the Lebesgue σ-algebra. The Lebesgue σ-algebra is actually the completion of the Borel σ-algebra, which means that it is the smallest σ-algebra that contains all the Borel sets and can be equipped with a complete measure. Also, the Borel measure and the Lebesgue measure coincide on the Borel sets (i.e.,

λ(E)=\mu(E)

for every Borel measurable set, where

\mu

is the Borel measure described above). This idea extends to finite-dimensional spaces

Rn

(the Cramér–Wold theorem, below) but does not hold, in general, for infinite-dimensional spaces. Infinite-dimensional Lebesgue measures do not exist.

Product spaces

If X and Y are second-countable, Hausdorff topological spaces, then the set of Borel subsets

Bor\colonTop2CHaus\toMeas

from the category of second-countable Hausdorff spaces to the category of measurable spaces preserves finite products.

Applications

Lebesgue–Stieltjes integral

See main article: Lebesgue–Stieltjes integration. The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind.

Laplace transform

See main article: Bernstein's theorem on monotone functions. One can define the Laplace transform of a finite Borel measure μ on the real line by the Lebesgue integral

(l{L}\mu)(s)=\int[0,infty)e-std\mu(t).

An important special case is where μ is a probability measure or, even more specifically, the Dirac delta function. In operational calculus, the Laplace transform of a measure is often treated as though the measure came from a distribution function f. In that case, to avoid potential confusion, one often writes

(l{L}f)(s)=

infty
\int
0-

e-stf(t)dt

where the lower limit of 0 is shorthand notation for

\lim\varepsilon\downarrow

infty.
\int
-\varepsilon

This limit emphasizes that any point mass located at 0 is entirely captured by the Laplace transform. Although with the Lebesgue integral, it is not necessary to take such a limit, it does appear more naturally in connection with the Laplace–Stieltjes transform.

Moment problem

See main article: Moment problem. One can define the moments of a finite Borel measure μ on the real line by the integral

mn=

b
\int
a

xnd\mu(x).

For

(a,b)=(-infty,infty),(0,infty),(0,1)

these correspond to the Hamburger moment problem, the Stieltjes moment problem and the Hausdorff moment problem, respectively. The question or problem to be solved is, given a collection of such moments, is there a corresponding measure? For the Hausdorff moment problem, the corresponding measure is unique. For the other variants, in general, there are an infinite number of distinct measures that give the same moments.

Hausdorff dimension and Frostman's lemma

See main article: Hausdorff dimension and Frostman lemma.

Given a Borel measure μ on a metric space X such that μ(X) > 0 and μ(B(x, r)) ≤ rs holds for some constant s > 0 and for every ball B(x, r) in X, then the Hausdorff dimension dimHaus(X) ≥ s. A partial converse is provided by the Frostman lemma:[4]

Lemma: Let A be a Borel subset of Rn, and let s > 0. Then the following are equivalent:

\mu(B(x,r))\lers

holds for all x ∈ Rn and r > 0.

Cramér–Wold theorem

See main article: Cramér–Wold theorem. The Cramér–Wold theorem in measure theory states that a Borel probability measure on

Rk

is uniquely determined by the totality of its one-dimensional projections.[5] It is used as a method for proving joint convergence results. The theorem is named after Harald Cramér and Herman Ole Andreas Wold.

See also

Further reading

External links

Notes and References

  1. D. H. Fremlin, 2000. Measure Theory . Torres Fremlin.
  2. Book: Alan J. Weir . General integration and measure . . 1974 . 0-521-29715-X . 158–184 .
  3. [Vladimir I. Bogachev]
  4. Book: Rogers, C. A.. Hausdorff measures. Third. Cambridge Mathematical Library. Cambridge University Press. Cambridge. 1998. xxx+195. 0-521-62491-6.
  5. K. Stromberg, 1994. Probability Theory for Analysts. Chapman and Hall.