Blum Blum Shub (B.B.S.) is a pseudorandom number generator proposed in 1986 by Lenore Blum, Manuel Blum and Michael Shub that is derived from Michael O. Rabin's one-way function.__TOC__Blum Blum Shub takes the form
xn+1=
2 | |
x | |
n |
\bmodM
where M = pq is the product of two large primes p and q. At each step of the algorithm, some output is derived from xn+1; the output is commonly either the bit parity of xn+1 or one or more of the least significant bits of xn+1.
The seed x0 should be an integer that is co-prime to M (i.e. p and q are not factors of x0) and not 1 or 0.
The two primes, p and q, should both be congruent to 3 (mod 4) (this guarantees that each quadratic residue has one square root which is also a quadratic residue), and should be safe primes with a small gcd((p-3)/2, (q-3)/2) (this makes the cycle length large).
An interesting characteristic of the Blum Blum Shub generator is the possibility to calculate any xi value directly (via Euler's theorem):
xi=\left(
2i\bmodλ(M) | |
x | |
0 |
\right)\bmodM
where
λ
λ(M)=λ(p ⋅ q)=\operatorname{lcm}(p-1,q-1)
There is a proof reducing its security to the computational difficulty of factoring. When the primes are chosen appropriately, and O(log log M) lower-order bits of each xn are output, then in the limit as M grows large, distinguishing the output bits from random should be at least as difficult as solving the quadratic residuosity problem modulo M.
The performance of the BBS random-number generator depends on the size of the modulus M and the number of bits per iteration j. While lowering M or increasing j makes the algorithm faster, doing so also reduces the security. A 2005 paper gives concrete, as opposed to asymptotic, security proof of BBS, for a given M and j. The result can also be used to guide choices of the two numbers by balancing expected security against computational cost.[1]
Let
p=11
q=23
s=3
s
{\rmgcd}((p-3)/2,(q-3)/2)=2
x0
x-1=s
x0
x1
x2
\ldots
x5
The following is a Python implementation that does check for primality.
3 assert sympy.isprime(p1//2) assert sympy.isprime(p2//2) n = p1 * p2 numbers = [] for _ in range(iterations): seed = (seed ** 2) % n if seed in numbers: print(f"The RNG has fallen into a loop at steps") return numbers numbers.append(seed) return numbers
print(blum_blum_shub(11, 23, 3, 100))
The following Common Lisp implementation provides a simple demonstration of the generator, in particular regarding the three bit selection methods. It is important to note that the requirements imposed upon the parameters p, q and s (seed) are not checked.
(defun get-even-parity-bit (bits) "Returns the even parity bit of the integer-encoded BITS." (declare (type (integer 0 *) bits)) (the bit (mod (get-number-of-1-bits bits) 2)))
(defun get-least-significant-bit (bits) "Returns the least significant bit of the integer-encoded BITS." (declare (type (integer 0 *) bits)) (the bit (ldb (byte 1 0) bits)))
(defun make-blum-blum-shub (&key (p 11) (q 23) (s 3)) "Returns a function of no arguments which represents a simple Blum-Blum-Shub pseudorandom number generator, configured to use the generator parameters P, Q, and S (seed), and returning three values: (1) the number x[n+1], (2) the even parity bit of the number, (3) the least significant bit of the number. --- Please note that the parameters P, Q, and S are not checked in accordance to the conditions described in the article." (declare (type (integer 0 *) p q s)) (let ((M (* p q)) ;; M = p * q (x[n] s)) ;; x0 = seed (declare (type (integer 0 *) M x[n])) #'(lambda ;; x[n+1] = x[n]^2 mod M (let ((x[n+1] (mod (* x[n] x[n]) M))) (declare (type (integer 0 *) x[n+1])) ;; Compute the random bit(s) based on x[n+1]. (let ((even-parity-bit (get-even-parity-bit x[n+1])) (least-significant-bit (get-least-significant-bit x[n+1]))) (declare (type bit even-parity-bit)) (declare (type bit least-significant-bit)) ;; Update the state such that x[n+1] becomes the new x[n]. (setf x[n] x[n+1]) (values x[n+1] even-parity-bit least-significant-bit))))))