Bergman kernel explained
In the mathematical study of several complex variables, the Bergman kernel, named after Stefan Bergman, is the reproducing kernel for the Hilbert space (RKHS) of all square integrable holomorphic functions on a domain D in Cn.
In detail, let L2(D) be the Hilbert space of square integrable functions on D, and let L2,h(D) denote the subspace consisting of holomorphic functions in L2(D): that is,
where
H(
D) is the space of holomorphic functions in
D. Then
L2,h(
D) is a Hilbert space: it is a
closed linear subspace of
L2(
D), and therefore
complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function
ƒ in
Dfor every
compact subset
K of
D. Thus convergence of a sequence of holomorphic functions in
L2(
D) implies also
compact convergence, and so the limit function is also holomorphic.
Another consequence of is that, for each z ∈ D, the evaluation
\operatorname{ev}z:f\mapstof(z)
is a continuous linear functional on
L2,h(
D). By the
Riesz representation theorem, this functional can be represented as the inner product with an element of
L2,h(
D), which is to say that
\operatorname{ev}zf=\intDf(\zeta)\overline{ηz(\zeta)}d\mu(\zeta).
The Bergman kernel
K is defined by
K(z,\zeta)=\overline{ηz(\zeta)}.
The kernel
K(
z,ζ) is holomorphic in
z and antiholomorphic in ζ, and satisfies
f(z)=\intDK(z,\zeta)f(\zeta)d\mu(\zeta).
One key observation about this picture is that L2,h(D) may be identified with the space of
holomorphic (n,0)-forms on D, via multiplication by
. Since the
inner product on this space is manifestly invariant under biholomorphisms of D, the Bergman kernel and the associated
Bergman metric are therefore automatically invariant under the automorphism group of the domain.
The Bergman kernel for the unit disc D is the function
See also
References