Beauville surface explained

In mathematics, a Beauville surface is one of the surfaces of general type introduced by . They are examples of "fake quadrics", with the same Betti numbers as quadric surfaces.

Construction

Let C1 and C2 be smooth curves with genera g1 and g2.Let G be a finite group acting on C1 and C2 such that

Then the quotient (C1 × C2)/G is a Beauville surface.

One example is to take C1 and C2 both copies of the genus 6 quinticX5 + Y5 + Z5 =0, and G to be an elementary abelian group of order 25, with suitable actions on the two curves.

Invariants

Hodge diamond