Backfitting algorithm explained

In statistics, the backfitting algorithm is a simple iterative procedure used to fit a generalized additive model. It was introduced in 1985 by Leo Breiman and Jerome Friedman along with generalized additive models. In most cases, the backfitting algorithm is equivalent to the Gauss - Seidel method, an algorithm used for solving a certain linear system of equations.

Algorithm

Additive models are a class of non-parametric regression models of the form:

Yi=\alpha+

p
\sum
j=1

fj(Xij)+\epsiloni

where each

X1,X2,\ldots,Xp

is a variable in our

p

-dimensional predictor

X

, and

Y

is our outcome variable.

\epsilon

represents our inherent error, which is assumed to have mean zero. The

fj

represent unspecified smooth functions of a single

Xj

. Given the flexibility in the

fj

, we typically do not have a unique solution:

\alpha

is left unidentifiable as one can add any constants to any of the

fj

and subtract this value from

\alpha

. It is common to rectify this by constraining
N
\sum
i=1

fj(Xij)=0

for all

j

leaving

\alpha=1/N

N
\sum
i=1

yi

necessarily.

The backfitting algorithm is then: Initialize

\hat{\alpha}=1/N

N
\sum
i=1

yi,\hat{fj}\equiv0

,

\forallj

Do until

\hat{fj}

converge: For each predictor j: (a)

\hat{fj}\leftarrowSmooth[\lbraceyi-\hat{\alpha}-\sumk\hat{fk}(xik)

N
\rbrace
1

]

(backfitting step) (b)

\hat{fj}\leftarrow\hat{fj}-1/N

N
\sum
i=1

\hat{fj}(xij)

(mean centering of estimated function)

where

Smooth

is our smoothing operator. This is typically chosen to be a cubic spline smoother but can be any other appropriate fitting operation, such as:

In theory, step (b) in the algorithm is not needed as the function estimates are constrained to sum to zero. However, due to numerical issues this might become a problem in practice.[1]

Motivation

If we consider the problem of minimizing the expected squared error:

minE[Y-(\alpha+

p
\sum
j=1

fj(X

2
j))]

There exists a unique solution by the theory of projections given by:

fi(Xi)=E[Y-(\alpha+

p
\sum
ji

fj(Xj))|Xi]

for i = 1, 2, ..., p.

This gives the matrix interpretation:

\begin{pmatrix} I&P1&&P1\\ P2&I&&P2\\ \vdots&&\ddots&\vdots\\ Pp&&Pp&I\end{pmatrix} \begin{pmatrix} f1(X1)\\ f2(X2)\\ \vdots\\ fp(Xp) \end{pmatrix} = \begin{pmatrix} P1Y\\ P2Y\\ \vdots\\ PpY \end{pmatrix}

where

Pi()=E(|Xi)

. In this context we can imagine a smoother matrix,

Si

, which approximates our

Pi

and gives an estimate,

SiY

, of

E(Y|X)

\begin{pmatrix} I&S1&&S1\\ S2&I&&S2\\ \vdots&&\ddots&\vdots\\ Sp&&Sp&I\end{pmatrix} \begin{pmatrix} f1\\ f2\\ \vdots\\ fp \end{pmatrix} = \begin{pmatrix} S1Y\\ S2Y\\ \vdots\\ SpY \end{pmatrix}

or in abbreviated form

\hat{S}f=QY

An exact solution of this is infeasible to calculate for large np, so the iterative technique of backfitting is used. We take initial guesses

(0)
f
j
and update each
(\ell)
f
j
in turn to be the smoothed fit for the residuals of all the others:
(\ell)
\hat{f
j}

\leftarrowSmooth[\lbraceyi-\hat{\alpha}-\sumk\hat{fk}(xik)

N
\rbrace
1

]

Looking at the abbreviated form it is easy to see the backfitting algorithm as equivalent to the Gauss - Seidel method for linear smoothing operators S.

Explicit derivation for two dimensions

Following,[2] we can formulate the backfitting algorithm explicitly for the two dimensional case. We have:

f1=S1(Y-f2),f2=S2(Y-f1)

If we denote

(i)
\hat{f}
1

as the estimate of

f1

in the ith updating step, the backfitting steps are
(i)
\hat{f}
1

=S1[Y-

(i-1)
\hat{f}
2

],

(i)
\hat{f}
2

=S2[Y-

(i)
\hat{f}
1

]

By induction we get

(i)
\hat{f}
1

=Y-

i-1
\sum
\alpha=0

(S1

\alpha(I-S
S
1)Y

-(S1

i-1
S
2)

S1\hat{f}

(0)
2

and

(i)
\hat{f}
2

=S2

i-1
\sum
\alpha=0

(S1

\alpha(I-S
S
1)Y

+S2(S1

i-1
S
2)

S1\hat{f}

(0)
2

If we set

(0)
\hat{f}
2

=0

then we get
(i)
\hat{f}
1

=Y-

-1
S
2
(i)
\hat{f}
2

= [I-

i-1
\sum
\alpha=0

(S1

\alpha(I-S
S
1)]Y
(i)
\hat{f}
2

=[S2

i-1
\sum
\alpha=0

(S1

\alpha(I-S
S
1)]Y

Where we have solved for

(i)
\hat{f}
1

by directly plugging out from

f2=S2(Y-f1)

.

We have convergence if

\|S1S2\|<1

. In this case, letting
(i)
\hat{f}
1

,

(i)
\hat{f}
2

\xrightarrow{}

(infty)
\hat{f}
1

,

(infty)
\hat{f}
2

:
(infty)
\hat{f}
1

=Y-

-1
S
2
(infty)
\hat{f}
2

= Y-(I-S1

-1
S
2)

(I-S1)Y

(infty)
\hat{f}
2

=S2(I-S1

-1
S
2)

(I-S1)Y

We can check this is a solution to the problem, i.e. that

(i)
\hat{f}
1

and
(i)
\hat{f}
2

converge to

f1

and

f2

correspondingly, by plugging these expressions into the original equations.

Issues

The choice of when to stop the algorithm is arbitrary and it is hard to know a priori how long reaching a specific convergence threshold will take. Also, the final model depends on the order in which the predictor variables

Xi

are fit.

As well, the solution found by the backfitting procedure is non-unique. If

b

is a vector such that

\hat{S}b=0

from above, then if

\hat{f}

is a solution then so is

\hat{f}+\alphab

is also a solution for any

\alpha\inR

. A modification of the backfitting algorithm involving projections onto the eigenspace of S can remedy this problem.

Modified algorithm

We can modify the backfitting algorithm to make it easier to provide a unique solution. Let

l{V}1(Si)

be the space spanned by all the eigenvectors of Si that correspond to eigenvalue 1. Then any b satisfying

\hat{S}b=0

has

bi\inl{V}1(Si)\foralli=1,...,p

and
p
\sum
i=1

bi=0.

Now if we take

A

to be a matrix that projects orthogonally onto

l{V}1(S1)+...+l{V}1(Sp)

, we get the following modified backfitting algorithm:

Initialize

\hat{\alpha}=1/N

N
\sum
1

yi,\hat{fj}\equiv0

,

\foralli,j

,

\hat{f+}=\alpha+\hat{f1}+...+\hat{fp}

Do until

\hat{fj}

converge: Regress

y-\hat{f+}

onto the space

l{V}1(Si)+...+l{V}1(Sp)

, setting

a=A(Y-\hat{f+})

For each predictor j: Apply backfitting update to

(Y-a)

using the smoothing operator

(I-Ai)Si

, yielding new estimates for

\hat{fj}

References

External links

Notes and References

  1. [Trevor Hastie|Hastie, Trevor]
  2. Härdle, Wolfgang; et al. (June 9, 2004). "Backfitting". Archived from the original on 2015-05-10. Retrieved 2015-08-19.