Autonomous system (mathematics) explained

In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems.

Many laws in physics, where the independent variable is usually assumed to be time, are expressed as autonomous systems because it is assumed the laws of nature which hold now are identical to those for any point in the past or future.

Definition

An autonomous system is a system of ordinary differential equations of the form\fracx(t)=f(x(t))where takes values in -dimensional Euclidean space; is often interpreted as time.

It is distinguished from systems of differential equations of the form\fracx(t)=g(x(t),t)in which the law governing the evolution of the system does not depend solely on the system's current state but also the parameter, again often interpreted as time; such systems are by definition not autonomous.

Properties

Solutions are invariant under horizontal translations:

Let

x1(t)

be a unique solution of the initial value problem for an autonomous system \fracx(t)=f(x(t)) \,, \quad x(0)=x_0.Then

x2(t)=x1(t-t0)

solves\fracx(t)=f(x(t)) \,, \quad x(t_0)=x_0.Denoting

s=t-t0

gets

x1(s)=x2(t)

and

ds=dt

, thus \fracx_2(t) = \fracx_1(t-t_0)=\fracx_1(s) = f(x_1(s)) = f(x_2(t)) .For the initial condition, the verification is trivial,x_2(t_0)=x_1(t_0-t_0)=x_1(0)=x_0 .

Example

The equation

y'=\left(2-y\right)y

is autonomous, since the independent variable (

x

) does not explicitly appear in the equation. To plot the slope field and isocline for this equation, one can use the following code in GNU Octave/MATLABFfun = @(X, Y)(2 - Y) .* Y; % function f(x,y)=(2-y)y[X, Y] = meshgrid(0:.2:6, -1:.2:3); % choose the plot sizesDY = Ffun(X, Y); DX = ones(size(DY)); % generate the plot valuesquiver(X, Y, DX, DY, 'k'); % plot the direction field in blackhold on;contour(X, Y, DY, [0 1 2], 'g'); % add the isoclines(0 1 2) in greentitle('Slope field and isoclines for f(x,y)=(2-y)y')One can observe from the plot that the function

\left(2-y\right)y

is

x

-invariant, and so is the shape of the solution, i.e.

y(x)=y(x-x0)

for any shift

x0

.

Solving the equation symbolically in MATLAB, by running syms y(x);equation = (diff(y)

(2 - y) * y);% solve the equation for a general solution symbolicallyy_general = dsolve(equation);obtains two equilibrium solutions,

y=0

and

y=2

, and a third solution involving an unknown constant

C3

,-2 / (exp(C3 - 2 * x) - 1).

Picking up some specific values for the initial condition, one can add the plot of several solutions% solve the initial value problem symbolically% for different initial conditionsy1 = dsolve(equation, y(1)

1); y2 = dsolve(equation, y(2)

1);y3 = dsolve(equation, y(3)

1); y4 = dsolve(equation, y(1)

3);y5 = dsolve(equation, y(2)

3); y6 = dsolve(equation, y(3)

3);% plot the solutionsezplot(y1, [0 6]); ezplot(y2, [0 6]); ezplot(y3, [0 6]);ezplot(y4, [0 6]); ezplot(y5, [0 6]); ezplot(y6, [0 6]);title('Slope field, isoclines and solutions for f(x,y)=(2-y)y')legend('Slope field', 'Isoclines', 'Solutions y_');text([1 2 3], [1 1 1], strcat('\leftarrow',));text([1 2 3], [3 3 3], strcat('\leftarrow',));grid on;

Qualitative analysis

Autonomous systems can be analyzed qualitatively using the phase space; in the one-variable case, this is the phase line.

Solution techniques

The following techniques apply to one-dimensional autonomous differential equations. Any one-dimensional equation of order

n

is equivalent to an

n

-dimensional first-order system (as described in reduction to a first-order system), but not necessarily vice versa.

First order

The first-order autonomous equation\frac = f(x)is separable, so it can be solved by rearranging it into the integral formt + C = \int \frac

Second order

The second-order autonomous equation\frac = f(x, x')is more difficult, but it can be solved[1] by introducing the new variablev = \fracand expressing the second derivative of

x

via the chain rule as\frac = \frac = \frac\frac = v\fracso that the original equation becomesv\frac = f(x, v)which is a first order equation containing no reference to the independent variable

t

. Solving provides

v

as a function of

x

. Then, recalling the definition of

v

:

\frac = v(x) \quad \Rightarrow \quad t + C = \int \frac

which is an implicit solution.

Special case:

The special case where

f

is independent of

x'

\frac = f(x)

benefits from separate treatment.[2] These types of equations are very common in classical mechanics because they are always Hamiltonian systems.

The idea is to make use of the identity

\frac = \left(\frac\right)^

which follows from the chain rule, barring any issues due to division by zero.

By inverting both sides of a first order autonomous system, one can immediately integrate with respect to

x

:

\frac = f(x) \quad \Rightarrow \quad \frac = \frac \quad \Rightarrow \quad t + C = \int \frac

which is another way to view the separation of variables technique. The second derivative must be expressed as a derivative with respect to

x

instead of

t

:

\begin\frac &= \frac\left(\frac\right)= \frac\left(\frac\right) \frac \\[4pt]&= \frac\left(\left(\frac\right)^\right) \left(\frac\right)^ \\[4pt]&= - \left(\frac\right)^ \frac \left(\frac\right)^= - \left(\frac\right)^ \frac \\[4pt]&= \frac\left(\frac\left(\frac\right)^\right)\end

To reemphasize: what's been accomplished is that the second derivative with respect to

t

has been expressed as a derivative of

x

. The original second order equation can now be integrated:

\begin\frac &= f(x) \\\frac\left(\frac\left(\frac\right)^\right) &= f(x) \\\left(\frac\right)^ &= 2 \int f(x) dx + C_1 \\\frac &= \pm \frac \\t + C_2 &= \pm \int \frac\end

This is an implicit solution. The greatest potential problem is inability to simplify the integrals, which implies difficulty or impossibility in evaluating the integration constants.

Special case:

Using the above approach, the technique can extend to the more general equation

\frac = \left(\frac\right)^n f(x)

where

n

is some parameter not equal to two. This will work since the second derivative can be written in a form involving a power of

x'

. Rewriting the second derivative, rearranging, and expressing the left side as a derivative:

\begin&- \left(\frac\right)^ \frac = \left(\frac\right)^ f(x) \\[4pt]&- \left(\frac\right)^ \frac = f(x) \\[4pt]&\frac\left(\frac\left(\frac\right)^\right) = f(x) \\[4pt]&\left(\frac\right)^ = (2 - n) \int f(x) dx + C_1 \\[2pt]&t + C_2 = \int \left((2 - n) \int f(x) dx + C_1\right)^ dx\end

The right will carry +/− if

n

is even. The treatment must be different if

n=2

:

\begin- \left(\frac\right)^ \frac &= f(x) \\-\frac\left(\ln\left(\frac\right)\right) &= f(x) \\\frac &= C_1 e^ \\t + C_2 &= C_1 \int e^ dx\end

Higher orders

There is no analogous method for solving third- or higher-order autonomous equations. Such equations can only be solved exactly if they happen to have some other simplifying property, for instance linearity or dependence of the right side of the equation on the dependent variable only[3] [4] (i.e., not its derivatives). This should not be surprising, considering that nonlinear autonomous systems in three dimensions can produce truly chaotic behavior such as the Lorenz attractor and the Rössler attractor.

Likewise, general non-autonomous equations of second order are unsolvable explicitly, since these can also be chaotic, as in a periodically forced pendulum.[5]

Multivariate case

See main article: Matrix differential equation. In

x'(t)=Ax(t)

, where

x(t)

is an

n

-dimensional column vector dependent on

t

.

The solution is

x(t)=eAc

where

c

is an

n x 1

constant vector.[6]

Finite durations

For non-linear autonomous ODEs it is possible under some conditions to develop solutions of finite duration,[7] meaning here that from its own dynamics, the system will reach the value zero at an ending time and stay there in zero forever after. These finite-duration solutions cannot be analytical functions on the whole real line, and because they will be non-Lipschitz functions at the ending time, they don't stand uniqueness of solutions of Lipschitz differential equations.

As example, the equation:

y'=-sgn(y)\sqrt{|y|},y(0)=1

Admits the finite duration solution:
y(x)=1\left(1-
4
x+\left|1-
2
x
2

\right|\right)2

See also

Notes and References

  1. Book: Boyce, William E. . Richard C. DiPrima . Elementary Differential Equations and Boundary Volume Problems . 8th . 2005 . John Wiley & Sons . 0-471-43338-1 . 133.
  2. Web site: Second order autonomous equation . . 28 February 2021 . en .
  3. http://eqworld.ipmnet.ru/en/solutions/ode/ode0503.pdf Third order autonomous equation
  4. http://eqworld.ipmnet.ru/en/solutions/ode/ode0506.pdf Fourth order autonomous equation
  5. Book: Blanchard . Devaney . Robert L. Devaney . Hall . Differential Equations . Brooks/Cole Publishing Co . 2005 . 540–543 . 0-495-01265-3.
  6. Web site: Method of Matrix Exponential . Math24 . 28 February 2021.
  7. Book: Vardia T. Haimo . 1985 24th IEEE Conference on Decision and Control . Finite Time Differential Equations . 1985 . 1729–1733 . 10.1109/CDC.1985.268832 . 45426376 . https://ieeexplore.ieee.org/document/4048613.