Atmospheric radiative transfer codes explained

An atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere.

Methods

At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation. For an instrument response, this is then convolved with the spectral response of the instrument.

A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.

Applications

Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols, or clouds. In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances.

There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 1980s – early 2000s. The more current (2011) project, Continual Intercomparison of Radiation Codes, emphasises also using observations to define intercomparison cases.[2]

Table of models

Name
Website
References
UV
Visible


mm/sub-mm
Microwave
/band
Scattering
Polarised
Geometry
License
Notes
4A/OPhttp://www.noveltis.fr/4AOP/ Scott and Chédin (1981)[3] band or line-by-linefreeware
6S/6SV1http://6s.ltdri.org/Kotchenova et al. (1997)[4] bandnon-Lambertian surface
ARTShttp://www.radiativetransfer.org/Eriksson et al. (2011)[5]

Buehler et al. (2018)[6]

line-by-linespherical 1D, 2D, 3DGPL
BTRAMhttp://blueskyspectroscopy.com/?page_id=21Chapman et al. (2009)[7] line-by-line1D,plane-parallelproprietary commercial
COARThttps://clouds.larc.nasa.gov/jin/coart.htmlJin et al. (2006)[8] plane-parallelfree
CMFGENhttps://sites.pitt.edu/~hillier/web/CMFGEN.htmHillier (2020)[9] line-by-line1D
CRMhttp://www.cgd.ucar.edu/cms/crm/bandfreely availablePart of NCAR Community Climate Model
CRTMhttps://www.jcsda.org/jcsda-project-community-radiative-transfer-modelJohnson et al. (2023)[10] band1D, Plane-ParallelPublic DomainFresnel ocean surfaces, Lambertian non-ocean surface
DART radiative transfer modelhttp://www.cesbio.ups-tlse.fr/dart/license/fr/getLicense.phpGastellu-Etchegorry et al. (1996)[11] bandspherical 1D, 2D, 3Dfree for research with licensenon-Lambertian surface, landscape creation and import
DISORThttp://lllab.phy.stevens.edu/disort/Stamnes et al. (1988)[12] Lin et al. (2015)[13] plane-parallel or pseudo-spherical (v4.0)free with restrictionsdiscrete ordinate, used by others
Eradiatehttps://www.eradiate.euband or line-by-lineplane-parallel, sphericalLGPL3D surface simulation
FARMShttp://www.sciencedirect.com/science/article/pii/S0038092X16301827Xie et al. (2016)[14] bandplane-parallelfreeRapidly simulating downwelling solar radiation at land surface for solar energy and climate research
Fu-Liouhttps://web.archive.org/web/20100527152529/http://snowdog.larc.nasa.gov/rose/fu200503/flp200503_web.htmFu and Liou (1993)[15] plane-parallelusage online, source code availableweb interface online at [16]
FUTBOLINMartin-Torres (2005)[17] line-by-linespherical or plane-parallelhandles line-mixing, continuum absorption and NLTE
GENLN2https://web.archive.org/web/20100609174702/http://acd.ucar.edu/~edwards/Edwards (1992)[18] line-by-line
KARINEhttps://archive.today/20121211191054/http://web.lmd.jussieu.fr/~eymet/karine.htmlEymet (2005)[19] plane-parallelGPL
KCARTAhttp://asl.umbc.edu/pub/packages/kcarta.htmlline-by-lineplane-parallelfreely availableAIRS reference model
KOPRAhttp://www.imk-asf.kit.edu/english/312.php
LBLRTMhttp://rtweb.aer.com/lblrtm.htmlClough et al. (2005)[20] line-by-line
LEEDRhttp://www.afit.edu/CDE/page.cfm?page=329&tabname=Tab5AFiorino et al. (2014)[21] band or line-by-linesphericalUS government softwareextended solar & lunar sources;single & multiple scattering
LinePakhttp://www.spectralcalc.com/Gordley et al. (1994)[22] line-by-linespherical (Earth and Mars), plane-parallelfreely available with restrictionsweb interface, SpectralCalc
libRadtranhttp://www.libradtran.org/doku.phpMayer and Kylling (2005)[23] band or line-by-lineplane-parallel or pseudo-sphericalGPL
MATISSEhttps://web.archive.org/web/20110721014407/http://matisse.onera.fr/index_english.htmCaillault et al. (2007)[24] bandproprietary freeware
MCARaTS[25] GPL3-D Monte Carlo
MODTRANhttp://www.modtran.org/Berk et al. (1998)[26] band or line-by-lineproprietary commercialsolar and lunar source, uses DISORT
MOSARThttps://web.archive.org/web/20130401085541/http://www.cpi.com/products/mosart.htmlCornette (2006)[27] bandfreely available
MSCARThttps://intersharp.gitlab.io/mscart-docs/index.htmlWang et al. (2017)[28] Wang et al. (2019)[29] 1D, 2D, 3Davailable on request
PICASOhttps://natashabatalha.github.io/picaso/linkBatalha et al. (2019)[30] Mukherjee et al. (2022)[31] λ>0.3 μmband or correlated-kplane-parallel, 1D, 3DGPL Githubexoplanet, brown dwarf, climate modeling, phase-dependence
PUMAShttp://ssed.gsfc.nasa.gov/psg/Line-by-line and correlated-kplane-parallel and pseudo-sphericalFree/online tool
RADIShttps://radis.readthedocs.io/Pannier (2018)[32] 1DGPL
RFMhttp://www.atm.ox.ac.uk/RFM/line-by-lineavailable on requestMIPAS reference model based on GENLN2
RRTM/RRTMGhttp://rtweb.aer.com/Mlawer, et al. (1997)[33] free of chargeuses DISORT
RTMOM[ftp://ftp.eumetsat.int/pub/MET/out/govaerts/RTMOM-BETA/index.htm]line-by-lineplane-parallelfreeware
RTTOVhttp://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/Saunders et al. (1999)[34] bandavailable on request
SASKTRAN[35] Bourassa et al.(2008)[36]

Zawada et al.

(2015)[37]

line-by-lineline-by-linespherical 1D, 2D, 3D, plane-parallelavailable on requestdiscrete and Monte Carlo options
SBDARThttps://web.archive.org/web/20100708003803/http://arm.mrcsb.com/sbdart/Ricchiazzi et al. (1998)[38] plane-paralleluses DISORT
SCIATRANhttp://www.iup.uni-bremen.de/sciatran/Rozanov et al. (2005),[39] Rozanov et al. (2014)[40] band or line-by-lineplane-parallel or pseudo-spherical or spherical
SHARMLyapustin (2002)[41]
SHDOMhttps://web.archive.org/web/20100610123300/http://nit.colorado.edu/shdom.htmlEvans (2006)[42]
σ-IASIhttp://www2.unibas.it/gmasiello/assite/as/sigma.htmlAmato et al. (2002)[43] Liuzzi et al. (2017)[44] bandplane-parallelAvailable on requestSemi-analytical Jacobians.
SMART-Ghttps://www.hygeos.com/smartgRamon et al. (2019)[45] band or line-by-lineplane-parallel or sphericalfree for non-commercial purposesMonte-Carlo code parallelized by GPU (CUDA). Atmosphere or/and ocean options
Streamer, Fluxnethttp://stratus.ssec.wisc.edu/streamer/streamer.html[46] Key and Schweiger (1998)[47] bandplane-parallelFluxnet is fast version of STREAMER using neural nets
XRTMhttp://reef.atmos.colostate.edu/~gregm/xrtm/plane-parallel and pseudo-sphericalGPL
VLIDORT/LIDORThttp://www.rtslidort.com/about_overview.html[48]
Spurr and Christi (2019)[49] line-by-line VLIDORT onlyplane-parallelUsed in SMART and VSTAR radiative transfer
NameWebsiteReferencesUVVISNear IRThermal IRMicrowavemm/sub-mmline-by-line/bandScatteringPolarisedGeometryLicenseNotes

Molecular absorption databases

For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.

Name Author Description
HITRAN[50] Rothman et al. (1987, 1992, 1998, 2003, 2005, 2009, 2013, 2017)HITRAN is a compilation of molecular spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The original version was created at the Air Force Cambridge Research Laboratories (1960's). The database is maintained and developed at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA.
GEISA[51] Jacquinet-Husson et al. (1999, 2005, 2008)GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) is a computer-accessible spectroscopic database, designed to facilitate accurate forward radiative transfer calculations using a line-by-line and layer-by-layer approach. It was started in 1974 at Laboratoire de Météorologie Dynamique (LMD/IPSL) in France. GEISA is maintained by the ARA group at LMD (Ecole Polytechnique) for its scientific part and by the ETHER group (CNRS Centre National de la Recherche Scientifique-France) at IPSL (Institut Pierre Simon Laplace) for its technical part. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board of the METOP European satellite) through the GEISA/IASI database derived from GEISA.

See also

References

Footnotes
General

External links

Notes and References

  1. 10.1016/j.solener.2013.01.030 . The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance. 2013. Andrews. Rob W.. Pearce. Joshua M.. Solar Energy. 91. 233–241. 2013SoEn...91..233A.
  2. http://circ.gsfc.nasa.gov/ Continual Intercomparison of Radiation Codes
  3. 10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2 . Scott . N. A. . Chedin . A fast line-by- line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas . J. Appl. Meteorol. . 20 . 1981JApMe..20..802S . 1981 . 802–812 . A. . 7. free .
  4. Kotchenova . S. Y. . Vermote . E. F. . Matarrese . R . Klemm . F. J. . Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance . Applied Optics . 45 . 26 . 6762–6774 . 10.1364/AO.45.006762 . 2006 . kotchenova1997 . 16926910. 2006ApOpt..45.6762K . 10.1.1.488.9804 .
  5. Eriksson . P. . Buehler . S. A. . Davis . C.P. . Emde . C. . Lemke . O. . Journal of Quantitative Spectroscopy and Radiative Transfer . ARTS, the atmospheric radiative transfer simulator, Version 2 . 112 . 1551–1558 . 10 . 2011 . 2016-11-02 . 10.1016/j.jqsrt.2011.03.001 . eriksson2011. 2011JQSRT.112.1551E.
  6. Buehler . S. A. . Mendrok . J. . Eriksson. P. . Perrin . A. . Larsson . R. . Lemke . O. . Geoscientific Model Development (GMD) . ARTS, the atmospheric radiative transfer simulator — version 2.2, the planetary toolbox edition . 11 . 1537–1556 . 4 . 2018 . 2023-01-16 . 10.5194/gmd-11-1537-2018 . 2018GMD....11.1537B . buehler2018 . free .
  7. Chapman . I. M. . Naylor . D. A. . Gom . B. G. . Querel . R. R. . Davis-Imhof . P. . The 30th Canadian Symposium on Remote Sensing . BTRAM: An Interactive Atmospheric Radiative Transfer Model . 30 . 22–25 . 2009 . chapman2009.
  8. Jin . Z. . Charlock . T.P. . Rutledge . K. . Stamnes . K. . Wang . Y. . 39305812 . An analytical solution of radiative transfer in the coupled atmosphere-ocean system with rough surface . Appl. Opt. . 45 . 28 . 2006 . 7443–7455 . 10.1364/AO.45.007443 . 16983433 . jin2006. 2006ApOpt..45.7443J . 2060/20080015519 . free .
  9. Hillier . D. John . 2020-05-01 . CMFGEN: A Key Spectroscopic Tool for Astrophysicists . HST Proposal . 16131.
  10. Johnson . B . Dang . C . Stegmann . P . Liu . Q . Moradi . I . Auligne . T . The Community Radiative Transfer Model (CRTM): Community-Focused Collaborative Model Development Accelerating Research to Operations . Bull. Amer. Meteor. Soc. . 2023 . 104 . 10 . 3–7 . 10.1175/BAMS-D-22-0015.1 . 2023BAMS..104E1817J . 258738740 . free .
  11. Gastellu-Etchegorry . JP . Demarez . V . Pinel . V . Zagolski . F . Modelling radiative transfer in heterogeneous 3-D vegetation canopies . Rem. Sens. Env. . 58 . 2 . 1996 . 131–156 . 1996RSEnv..58..131G . 10.1016/0034-4257(95)00253-7 .
  12. Stamnes . Knut . Tsay . S. C. . Wiscombe . W. . Jayaweera . Kolf . Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media . Appl. Opt. . 27 . 12 . 1988 . 2502–2509 . 10.1364/AO.27.002502 . 20531783 . stamnes1988. 1988ApOpt..27.2502S .
  13. Lin . Zhenyi . Stamnes . S. . Jin . Z. . Laszlo . I. . Tsay . S. C. . Wiscombe . W. . Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool . Journal of Quantitative Spectroscopy and Radiative Transfer . 157 . 12 . 2015 . 119–134 . 10.1016/j.jqsrt.2015.02.014 . lin2015. 2015JQSRT.157..119L . 119467744 .
  14. 10.1016/j.solener.2016.06.003 . Xie . Y. . Sengupta . M. . Dudhia . J. . A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation . Solar Energy . 135 . 2016 . 435–445 . Xie2016. 2016SoEn..135..435X . free .
  15. 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2 . Fu . Q. . Liou . K.-N . Parameterization of the radiative properties of cirrus clouds . J. Atmos. Sci. . 50 . 1993 . 2008–2025 . 1993JAtS...50.2008F . Fu1993 . 13 . free .
  16. Web site: Fu-Liou Cloud/Aerosol Forcing Page (Version 200503/MARCH 2005) . . . 2010-07-07 . dead . https://web.archive.org/web/20100527145310/http://snowdog.larc.nasa.gov/cgi-bin/rose/flp200503/flp200503.cgi . 2010-05-27 .
  17. Martin-Torres . F. J. . Kutepov . A. . Dudhia . A. . Gusev . O. . Feofilov . A.G. . Accurate and fast computation of the radiative transfer absorption rates for the infrared bands in the atmosphere of Titan . Geophysical Research Abstracts . 2003EAEJA.....7735M . 2003 . 7735.
  18. Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.
  19. KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.
  20. 10.1016/j.jqsrt.2004.05.058 . Clough . S. A. . Shephard . M. W. . Mlawer . E. J. . Delamere . J. S. . Iacono . M. J. . Cady-Pereira . K. . Boukabara . S. . Brown . P. D. . J. Quant. Spectrosc. Radiat. Transfer . Atmospheric radiative transfer modeling: a summary of the AER codes . 91 . 233–244 . 2005JQSRT..91..233C . 2005 . clough2005 . 2. 2027.42/142162 . free .
  21. 10.1175/JAMC-D-13-036.1 . Fiorino . S. T. . Randall . R. M. . Via . M. F. . Burley . J. L. . Validation of a UV-to-RF High-Spectral-Resolution Atmospheric Boundary Layer Characterization Tool . J. Appl. Meteorol. Climatol. . 53 . 1 . 136–156 . 2014 . fiorino2014. 2014JApMC..53..136F . free .
  22. Gordley . L. L. . Marshall . B. T. . J. Quant. Spectrosc. Radiat. Transfer . LINEPAK: Algorithm for Modeling Spectral Transmittance and Radiance . 52 . 563–580 . 1994JQSRT..52..563G . 1994 . gordley1994 . 5 . 10.1016/0022-4073(94)90025-6. 10.1.1.371.5401 .
  23. Mayer . B. . Kylling . A. . Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use . Atmospheric Chemistry and Physics . 5 . 2005 . 1855–1877 . 10.5194/acp-5-1855-2005 . mayer2005 . 7 . 2005ACP.....5.1855M . free .
  24. Caillaut . K. . Fauqueux . S. . Bourlier . C. . Simoneau . P. . Labarre . L. . Multiresolution optical characteristics of rough sea surface in the infrared . Applied Optics . 46 . 22 . 5471–5481 . 10.1364/AO.46.005471 . 17676164 . 2007 . caillout2007. 2007ApOpt..46.5471C .
  25. Web site: MCARaTS. sites.google.com. 2016-04-01.
  26. 10.1016/S0034-4257(98)00045-5 . Berk . A. . Bernstein . L. S. . Anderson . G. P. . Acharya . P. K. . Robertson . D. C. . Chetwynd . J. H. . Adler-Golden . S. M. . MODTRAN cloud and multiple scattering upgrades with application to AVIRIS . Remote Sensing of Environment . 65 . 3 . 367–375 . 1998 . berk1998. 1998RSEnv..65..367B .
  27. Cornette . William M. . Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) Computer Code Version 2.00., Lexington, MA (2006) . Proc. IEEE-GRSS/AFRL Atmospheric Transmission Modeling Conference, Lexington MA . 2006 . cornette2006.
  28. Wang . Zhen . Cui . Shengcheng . Yang . Jun . Gao . Haiyang . Liu . Chao . Zhang . Zhibo . A novel hybrid scattering order-dependent variance reduction method for monte carlo simulations of radiative transfer in cloudy atmosphere . Journal of Quantitative Spectroscopy and Radiative Transfer . 189 . 283–302 . 2017 . 10.1016/j.jqsrt.2016.12.002 . 2017JQSRT.189..283W . Wang2017. free .
  29. Wang . Zhen . Cui . Shengcheng . Zhang . Zhibo . Yang . Jun . Gao . Haiyang . Zhang . Feng . Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations . Journal of Quantitative Spectroscopy and Radiative Transfer . 235 . 2019 . 81–94 . 10.1016/j.jqsrt.2019.06.025 . 2019JQSRT.235...81W . Wang2019 . free .
  30. Batalha . Natasha E. . Marley . Mark S. . Lewis . Nikole K. . Fortney . Jonathan J. . 2019-06-01 . Exoplanet Reflected-light Spectroscopy with PICASO . The Astrophysical Journal . 878 . 1 . 70 . 10.3847/1538-4357/ab1b51 . 1904.09355 . 2019ApJ...878...70B . 128347336 . 0004-637X . free .
  31. Mukherjee . Sagnick . Batalha . Natasha E. . Fortney . Jonathan J. . Marley . Mark S. . 2023 . PICASO 3.0: A One-Dimensional Climate Model for Giant Planets and Brown Dwarfs . 2208.07836 . . 942 . 2 . 71 . 10.3847/1538-4357/ac9f48 . 2023ApJ...942...71M . 251594505 . free .
  32. Pannier . E. . Laux . C. . RADIS: A nonequilibrium line-by-line radiative code for CO2 and HITRAN-like database species . Quantitative Spectroscopy and Radiative Transfer . 222-223 . 12–25 . 10.1016/j.jqsrt.2018.09.027 . 2019 . 2019JQSRT.222...12P . 125474810 . pannier2018.
  33. Mlawer . E. J. . Taubman . S. J. . Brown . P. D. . Iacono . M. J. . Claugh . S. A. . 54031652 . RRTM, a validated correlated-k model for the longwave . J. Geophys. Res. . 102 . 16 . 663–682 . 1997JGR...10216663M . 10.1029/97JD00237 . 1997 . mlawer1997 . free .
  34. Saunders . R. W. . Matricardi . M. . Brunel . P. . An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations . Quarterly Journal of the Royal Meteorological Society . 125 . 1407–1425 . 1999QJRMS.125.1407S . saunders1999. 10.1256/smsqj.55614 . 1999 . 556 .
  35. Web site: Welcome to SASKTRAN's documentation! — SASKTRAN 0.1.3 documentation. arg.usask.ca. en. 2018-04-11.
  36. Bourassa. A.E.. Degenstein. D.A.. Llewellyn. E.J.. SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight. Journal of Quantitative Spectroscopy and Radiative Transfer. 109. 1. 52–73. 10.1016/j.jqsrt.2007.07.007. 2008JQSRT.109...52B. 2008.
  37. Zawada. D. J.. Dueck. S. R.. Rieger. L. A.. Bourassa. A. E.. Lloyd. N. D.. Degenstein. D. A.. 2015-06-26. High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model. Atmos. Meas. Tech.. 8. 6. 2609–2623. 10.5194/amt-8-2609-2015. 1867-8548. 2015AMT.....8.2609Z. free.
  38. 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2 . Ricchiazzi . P. . Yang . S. . Gautier . C. . Sowle . D. . 55800532 . SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere . Bull. Am. Meteorol. Soc. . 1998BAMS...79.2101R . 1998 . 79 . 10 . 2101–2114 . ricchiazzi1998. free .
  39. 10.1016/j.asr.2005.03.012 . Rozanov . A. . Rozanov . V. . Buchwitz . M. . Kokhanovsky . A. . Burrows . J. P. . SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region . Advances in Space Research . 36 . 5 . 1015–1019 . 2005AdSpR..36.1015R . 2005 . rozanov2005.
  40. 10.1016/j.jqsrt.2013.07.004 . Rozanov . V. . Rozanov . A. . Kokhanovsky . A. . Burrows . J. P. . Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN . Journal of Quantitative Spectroscopy and Radiative Transfer . 133 . 13–71 . 2014 . rozanov2014. 2014JQSRT.133...13R .
  41. Lyapustin . A. . Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study . Applied Optics . 41 . 27 . 5607–5615 . 2002 . 10.1364/AO.41.005607 . lyapustin2002. 12269559. 2002ApOpt..41.5607L .
  42. 10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2 . Evans . K. F. . The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer . Journal of the Atmospheric Sciences . 55 . 429–446 . 1998 . evans2006. 1998JAtS...55..429E . 3 . 10.1.1.555.9038 . 40027059 .
  43. 10.1016/S1364-8152(02)00027-0 . Amato . U. . Masiello . G. . Serio . C. . Viggiano . M. . The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives . Environmental Modelling & Software . 17 . 651–667 . 2002 . amato2002 . 7.
  44. 10.5194/amt-10-599-2017 . Liuzzi . G. . Masiello . G. . Serio . C. . Meloni . D. . Di Biagio . C. . Formenti . P. . Consistency of dimensional distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances . Atmospheric Measurement Techniques . 10 . 2 . 599–615 . 2017 . liuzzi2017. 2017AMT....10..599L . free. 11563/125342. free.
  45. 10.1016/j.jqsrt.2018.10.017 . Ramon . D. . Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code . Journal of Quantitative Spectroscopy and Radiative Transfer . 222-223 . 89–107 . 2019 . 2019JQSRT.222...89R . 125121586 .
  46. http://stratus.ssec.wisc.edu/fluxnet/ FluxNet
  47. 10.1016/S0098-3004(97)00130-1 . Key . J. . Schweiger . A. J. . 1998 . Tools for atmospheric radiative transfer: Streamer and FluxNet . Computers & Geosciences . 24 . 5 . 1998CG.....24..443K . 443–451. 2060/19980018471 . 118079586 . free .
  48. http://www.rtslidort.com/about_overview.html
  49. Book: 10.1007/978-3-030-03445-0_1 . Spurr . R. . Christi . M. . 2019 . The LIDORT and VLIDORT Linearized Scalar and Vector Discrete Ordinate Radiative Transfer Models . Springer Series in Light Scattering . 1–62 . 126425750 .
  50. http://www.hitran.org/ HITRAN Site
  51. http://ara.lmd.polytechnique.fr/ GEISA Site