X
E\bullet
Ei(X)
with 'ordinary' cohomology groups
Hj
E2
Hp(X;Eq(pt))
Ep+q(X)
Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where
E=HSing
E1
E
X
F
B
B
n
Bn
X
E2
Hp(B;Eq(F))
and converging to the associated graded ring of the filtered ring
p,q | |
E | |
infty |
⇒ Ep+q(X)
This is the Atiyah–Hirzebruch spectral sequence in the case where the fibre
F
For example, the complex topological K
KU(*)=Z[x,x-1]
x
2
E2
X
p,q | |
E | |
2 |
(X)=Hp(X;KUq(pt))
K
Kq(pt)=\begin{cases} Z&ifqiseven\\ 0&otherwise\end{cases}
p,2k+1 | |
E | |
2 |
(X)=0
E2
CPn
CPn
For example, consider the cotangent bundle of
S1
R
E2
\begin{array}{c|cc} \vdots&\vdots&\vdots\\ 2&H0(S1;Q)&H1(S1;Q)\\ 1&0&0\\ 0&H0(S1;Q)&H1(S1;Q)\\ -1&0&0\\ -2&H0(S1;Q)&H1(S1;Q)\\ \vdots&\vdots&\vdots\\ \hline&0&1 \end{array}
The odd-dimensional differentials of the AHSS for complex topological K-theory can be readily computed. For
d3
Sq3
\beta\circSq2\circr
r
2
\beta
0\toZ\toZ\toZ/2\to0
Consider a smooth complete intersection 3-fold
X
E2
\begin{array}{c|ccccc} \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 2&H0(X;Z)&0&H2(X;Z)&H3(X;Z)&H4(X;Z)&0&H6(X;Z)\\ 1&0&0&0&0&0&0&0\\ 0&H0(X;Z)&0&H2(X;Z)&H3(X;Z)&H4(X;Z)&0&H6(X;Z)\\ -1&0&0&0&0&0&0&0\\ -2&H0(X;Z)&0&H2(X;Z)&H3(X;Z)&H4(X;Z)&0&H6(X;Z)\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ \hline&0&1&2&3&4&5&6\end{array}
\begin{align} d3:E
0,2k | |
3 |
\to
3,2k-2 | |
E | |
3 |
\\ d3:E
3,2k | |
3 |
\to
6,2k-2 | |
E | |
3 |
\end{align}
E2=Einfty
Sqk:Hi(X;Z/2)\toHk+i(X;Z/2)
k>i
Sq2
H3(X;Z/2)\toH5(X)=0
Sq3=\beta\circSq2\circr
The Atiyah–Hirzebruch spectral sequence can be used to compute twisted K-theory groups as well. In short, twisted K-theory is the group completion of the isomorphism classes of vector bundles defined by gluing data
(Uij,gij)
gijgjkgki=λijk
λ\inH3(X,Z)
p,q | |
E | |
2 |
=Hp(X;KUq(*)) ⇒
p+q | |
KU | |
λ(X) |
p,q | |
E | |
3 |
=
p,q | |
E | |
2 |
=\begin{array}{c|cccc} \vdots&\vdots&\vdots&\vdots&\vdots\\ 2&H0(S3;Z)&0&0&H3(S3;Z)\\ 1&0&0&0&0\\ 0&H0(S3;Z)&0&0&H3(S3;Z)\\ -1&0&0&0&0\\ -2&H0(S3;Z)&0&0&H3(S3;Z)\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ \hline&0&1&2&3 \end{array}
E3
d3=Sq3+λ
d2k+1
R
\begin{align} d5&=\{λ,λ,-\}\\ d7&=\{λ,λ,λ,-\} \end{align}
Einfty=E4
The twisted K-theory for
S3
Sq3=\beta\circSq2\circr
H2(S3)=0
E3
λ
k | |
KU | |
λ |
=\begin{cases} Z&kiseven\\ Z/λ&kisodd \end{cases}
Recall that the rational bordism group
SO | |
\Omega | |
* |
⊗ Q
Q[[CP0],[CP2],[CP4],[CP6],\ldots]
[CP2k]
4k
Recall that
MU*(pt)=Z[x1,x2,\ldots]
xi\in\pi2i(MU)
X
E2
p,q | |
E | |
2 |
=Hp(X;MUq(pt))