In mathematics, the Arakawa–Kaneko zeta function is a generalisation of the Riemann zeta function which generates special values of the polylogarithm function.
The zeta function
\xik(s)
\xik(s)=
1 | |
\Gamma(s) |
+infty | |
\int | |
0 |
ts-1 | |
et-1 |
-t | |
Li | |
k(1-e |
)dt
where Lik is the k-th polylogarithm
Lik(z)=
infty | |
\sum | |
n=1 |
zn | |
nk |
.
The integral converges for
\Re(s)>0
\xik(s)
The special case k = 1 gives
\xi1(s)=s\zeta(s+1)
\zeta
The special case s = 1 remarkably also gives
\xik(1)=\zeta(k+1)
\zeta
The values at integers are related to multiple zeta function values by
\xik(m)=
*(k,1,\ldots,1) | |
\zeta | |
m |
where
*(k | |
\zeta | |
1,...,k |
n-1,kn)=\sum
0<m1<m2< … <mn |
1 | |||||||||||||||||||||
|
.