In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs).[1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique. The phrase undetermined coefficients can also be used to refer to the step in the annihilator method in which the coefficients are calculated.
The annihilator method is used as follows. Given the ODE
P(D)y=f(x)
A(D)
A(D)f(x)=0
A(D)
(A(D)P(D))y=0
\{y1,\ldots,yn\}
This method is not as general as variation of parameters in the sense that an annihilator does not always exist.
f(x) | A(D) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
anxn+an-1xn-1+ … +a1x+a0 | Dn+1 | |||||||||
ea | D-a | |||||||||
xk.ea | (D-a)k+1 | |||||||||
\cos(bx) or \sin(bx) | D2+b2 | |||||||||
xk\cos(bx) or xk\sin(bx) | (D2+b2)k+1 | |||||||||
ea\cos(bx) or ea\sin(bx) | (D-a)2+b2=D2-2aD+a2+b2 | |||||||||
xkea\cos(bx) or xkea\sin(bx) | \left[(D-a)2+b2\right]k+1=\left[D2-2aD+a2+b2\right]k+1 | |||||||||
anxn+ … +a1x+a0+b1
+ … +bk
| Dn+1(D\mpc1). … .(D\pmck) |
Where
k
k,b,a,c1, … ,ck
If
f(x)
Given
y''-4y'+5y=\sin(kx)
P(D)=D2-4D+5
\sin(kx)
A(D)=D2+k2
A(z)P(z)
\{2+i,2-i,ik,-ik\}
A(D)P(D)
\{y1,y2,y3,y
(2+i)x | |
4\}=\{e |
,e(2-i)x,eikx,e-ikx\}.
Setting
y=c1y1+c2y2+c3y3+c4y4
\begin{align} \sin(kx)&=P(D)y\\[8pt] &=P(D)(c1y1+c2y2+c3y3+c4y4)\\[8pt] &=c1P(D)y1+c2P(D)y2+c3P(D)y3+c4P(D)y4\\[8pt] &
2-4ik+5)y | |
=0+0+c | |
3+c |
2+4ik+5)y | |
4 |
\\[8pt] &
2+4ik+5)(\cos(kx)-i\sin(kx)) \end{align} | |
=c | |
4(-k |
giving the system
2+4ik+5)c | |
i=(k | |
4 |
2-4ik-5)c | |
0=(k | |
4 |
which has solutions
c | ||||
|
c | ||||
|
giving the solution set
\begin{align} y&=c1y1+c2y
|
|
4\\[8pt] &=c1y1+c2y
|
\\[8pt] &=c1y1+c2y
|
. \end{align}
This solution can be broken down into the homogeneous and nonhomogeneous parts. In particular,
yp=
4k\cos(kx)+(5-k2)\sin(kx) | |
k4+6k2+25 |
yc=c1y1+c2y2
c1
c2
The fundamental solutions
y1=e(2+i)x
y2=e(2-i)x
e(2+i)x=e2xeix=e2x(\cosx+i\sinx)
e(2-i)x=e2xe-ix=e2x(\cosx-i\sinx)
Then
c1y1+c2y2=
2x | |
c | |
1e |
(\cosx+i\sinx)+c2e2x(\cosx-i\sinx)=(c1+c2)e2x\cosx+i(c1-c2)e2x\sinx
yc=e2x(c1\cosx+c2\sinx)