Almost prime explained

In number theory, a natural number is called -almost prime if it has prime factors.[1] [2] [3] More formally, a number is -almost prime if and only if, where is the total number of primes in the prime factorization of (can be also seen as the sum of all the primes' exponents):

\Omega(n):=\sumai    if    n=\prod

ai
p
i

.

A natural number is thus prime if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost prime. The set of -almost primes is usually denoted by . The smallest -almost prime is . The first few -almost primes are:

-almost primesOEIS sequence
1 2, 3, 5, 7, 11, 13, 17, 19, …
2 4, 6, 9, 10, 14, 15, 21, 22, …
3 8, 12, 18, 20, 27, 28, 30, …
4 16, 24, 36, 40, 54, 56, 60, …
5 32, 48, 72, 80, 108, 112, …
6 64, 96, 144, 160, 216, 224, …
7 128, 192, 288, 320, 432, 448, …
8 256, 384, 576, 640, 864, 896, …
9 512, 768, 1152, 1280, 1728, …
10 1024, 1536, 2304, 2560, …
11 2048, 3072, 4608, 5120, …
12 4096, 6144, 9216, 10240, …
13 8192, 12288, 18432, 20480, …
14 16384, 24576, 36864, 40960, …
15 32768, 49152, 73728, 81920, …
16 65536, 98304, 147456, …
17 131072, 196608, 294912, …
18 262144, 393216, 589824, …
19 524288, 786432, 1179648, …
20 1048576, 1572864, 2359296, …

The number of positive integers less than or equal to with exactly prime divisors (not necessarily distinct) is asymptotic to:[4]

\pik(n)\sim\left(

n
logn

\right)

(loglogn)k-1
(k-1)!

,

a result of Landau.[5] See also the Hardy–Ramanujan theorem.

Properties

Notes and References

  1. Book: Sándor . József . Dragoslav . Mitrinović S. . Crstici . Borislav . 2006 . Handbook of Number Theory I . . 978-1-4020-4215-7 . 10.1007/1-4020-3658-2 . 316.
  2. Rényi . Alfréd A. . Alfréd Rényi . 1948 . On the representation of an even number as the sum of a single prime and single almost-prime number . ru . Izvestiya Rossiiskoi Akademii Nauk: Seriya Matematicheskaya . 12 . 1 . 57–78 .
  3. Heath-Brown . D. R. . Roger Heath-Brown . May 1978 . Almost-primes in arithmetic progressions and short intervals . Mathematical Proceedings of the Cambridge Philosophical Society . 10.1017/S0305004100054657 . 1978MPCPS..83..357H . 122691474 . 83 . 3 . 357–375.
  4. Book: Tenenbaum , Gerald . Gerald Tenenbaum . 1995 . Introduction to Analytic and Probabilistic Number Theory . . 978-0-521-41261-2.
  5. Book: Landau , Edmund . Edmund Landau . 1953 . first published 1909 . Handbuch der Lehre von der Verteilung der Primzahlen . § 56, Über Summen der Gestalt

    \sump\leqF(p,x)

    . . 1 . 211.