Acousto-electric effect is a nonlinear phenomenon of generation of electric current in a piezo-electric semiconductor by a propagating acoustic wave. The generated electric current is proportional to the intensity of the acoustic wave and to the value of its electron-induced attenuation. The effect was theoretically predicted in 1953 by Parmenter.[1] Its first experimental observation was reported in 1957 by Weinreich and White.[2]
There are two varieties of the original acousto-electric effect called the valley acoustoelectric effect and valley acoustoelectric Hall effect theoretically predicted in 2019 by Kalameitsev, Kovalev, and Savenko.[3] These effects also represent nonlinear phenomena of generation of electric current in two-dimensional materials, such as transition metal dichalcogenide monolayers or graphene, located on a piezoelectric substrate by a propagating acoustic wave. The generated electric currents are proportional to the intensity of the acoustic wave and their directions are perpendicular to the acoustic wave vector.