Access control explained

In physical security and information security, access control (AC) is the selective restriction of access to a place or other resource, while access management describes the process. The act of accessing may mean consuming, entering, or using. Permission to access a resource is called authorization.

Access control on digital platforms is also termed admission control. The protection of external databases is essential to preserve digital security.[1]

Access control is considered to be a significant aspect of privacy that should be further studied. Access control policy (also access policy) is part of an organization’s security policy. In order to verify the access control policy, organizations use an access control model.[2] General security policies require designing or selecting appropriate security controls to satisfy an organization's risk appetite - access policies similarly require the organization to design or select access controls.

Physical security

See main article: Physical security.

Geographical access control may be enforced by personnel (e.g. border guard, bouncer, ticket checker), or with a device such as a turnstile. There may be fences to avoid circumventing this access control. An alternative of access control in the strict sense (physically controlling access itself) is a system of checking authorized presence, see e.g. Ticket controller (transportation). A variant is exit control, e.g. of a shop (checkout) or a country.[3]

The term access control refers to the practice of restricting entrance to a property, a building, or a room to authorized persons. Physical access control can be achieved by a human (a guard, bouncer, or receptionist), through mechanical means such as locks and keys, or through technological means such as access control systems like the mantrap. Within these environments, physical key management may also be employed as a means of further managing and monitoring access to mechanically keyed areas or access to certain small assets.

Physical access control is a matter of who, where, and when. An access control system determines who is allowed to enter or exit, where they are allowed to exit or enter, and when they are allowed to enter or exit. Historically, this was partially accomplished through keys and locks. When a door is locked, only someone with a key can enter through the door, depending on how the lock is configured. Mechanical locks and keys do not allow restriction of the key holder to specific times or dates. Mechanical locks and keys do not provide records of the key used on any specific door, and the keys can be easily copied or transferred to an unauthorized person. When a mechanical key is lost or the key holder is no longer authorized to use the protected area, the locks must be re-keyed.[4]

Electronic access control

Electronic access control (EAC) uses computers to solve the limitations of mechanical locks and keys. It is particularly difficult to guarantee identification (a critical component of authentication) with mechanical locks and keys. A wide range of credentials can be used to replace mechanical keys, allowing for complete authentication, authorization, and accounting. The electronic access control system grants access based on the credential presented. When access is granted, the resource is unlocked for a predetermined time and the transaction is recorded. When access is refused, the resource remains locked and the attempted access is recorded. The system will also monitor the resource and alarm if the resource is forcefully unlocked or held open too long after being unlocked.

When a credential is presented to a reader, the reader sends the credential's information, usually a number, to a control panel, a highly reliable processor. The control panel compares the credential's number to an access control list, grants or denies the presented request, and sends a transaction log to a database. When access is denied based on the access control list, the door remains locked. If there is a match between the credential and the access control list, the control panel operates a relay that in turn unlocks the resource. The control panel also ignores an opening signal to prevent an alarm. Often the reader provides feedback, such as a flashing red LED for an access denied and a flashing green LED for an access granted.[5]

The above description illustrates a single factor transaction. Credentials can be passed around, thus subverting the access control list. For example, Alice has access rights to the server room, but Bob does not. Alice either gives Bob her credential, or Bob takes it; he now has access to the server room. To prevent this, two-factor authentication can be used. In a two factor transaction, the presented credential and a second factor are needed for access to be granted; another factor can be a PIN, a second credential, operator intervention, or a biometric input.

There are three types (factors) of authenticating information:[6]

Passwords are a common means of verifying a user's identity before access is given to information systems. In addition, a fourth factor of authentication is now recognized: someone you know, whereby another person who knows you can provide a human element of authentication in situations where systems have been set up to allow for such scenarios. For example, a user may have their password, but have forgotten their smart card. In such a scenario, if the user is known to designated cohorts, the cohorts may provide their smart card and password, in combination with the extant factor of the user in question, and thus provide two factors for the user with the missing credential, giving three factors overall to allow access.

Credential

A credential is a physical/tangible object, a piece of knowledge, or a facet of a person's physical being that enables an individual access to a given physical facility or computer-based information system. Typically, credentials can be something a person knows (such as a number or PIN), something they have (such as an access badge), something they are (such as a biometric feature), something they do (measurable behavioural patterns), or some combination of these items. This is known as multi-factor authentication. The typical credential is an access card or key-fob, and newer software can also turn users' smartphones into access devices.[7]

There are many card technologies including magnetic stripe, bar code, Wiegand, 125 kHz proximity, 26-bit card-swipe, contact smart cards, and contactless smart cards. Also available are key-fobs, which are more compact than ID cards, and attach to a key ring. Biometric technologies include fingerprint, facial recognition, iris recognition, retinal scan, voice, and hand geometry. The built-in biometric technologies found on newer smartphones can also be used as credentials in conjunction with access software running on mobile devices.[8] In addition to older more traditional card access technologies, newer technologies such as near-field communication (NFC), Bluetooth low energy or Ultra-wideband (UWB) can also communicate user credentials to readers for system or building access.[9] [10] [11]

Access control system components

Components of an access control system include:

Access control topology

Access control decisions are made by comparing the credentials to an access control list. This look-up can be done by a host or server, by an access control panel, or by a reader. The development of access control systems has observed a steady push of the look-up out from a central host to the edge of the system, or the reader. The predominant topology circa 2009 is hub and spoke with a control panel as the hub, and the readers as the spokes. The look-up and control functions are by the control panel. The spokes communicate through a serial connection; usually RS-485. Some manufactures are pushing the decision making to the edge by placing a controller at the door. The controllers are IP enabled, and connect to a host and database using standard networks[13]

Types of readers

Access control readers may be classified by the functions they are able to perform:[14]

Some readers may have additional features such as an LCD and function buttons for data collection purposes (i.e. clock-in/clock-out events for attendance reports), camera/speaker/microphone for intercom, and smart card read/write support.

Access control system topologies

1. Serial controllers. Controllers are connected to a host PC via a serial RS-485 communication line (or via 20mA current loop in some older systems). External RS-232/485 converters or internal RS-485 cards have to be installed, as standard PCs do not have RS-485 communication ports.

Advantages:

Disadvantages:

2. Serial main and sub-controllers. All door hardware is connected to sub-controllers (a.k.a. door controllers or door interfaces). Sub-controllers usually do not make access decisions, and instead forward all requests to the main controllers. Main controllers usually support from 16 to 32 sub-controllers.

Advantages:

Disadvantages:

3. Serial main controllers & intelligent readers. All door hardware is connected directly to intelligent or semi-intelligent readers. Readers usually do not make access decisions, and forward all requests to the main controller. Only if the connection to the main controller is unavailable, will the readers use their internal database to make access decisions and record events. Semi-intelligent reader that have no database and cannot function without the main controller should be used only in areas that do not require high security. Main controllers usually support from 16 to 64 readers. All advantages and disadvantages are the same as the ones listed in the second paragraph. 4. Serial controllers with terminal servers. In spite of the rapid development and increasing use of computer networks, access control manufacturers remained conservative, and did not rush to introduce network-enabled products. When pressed for solutions with network connectivity, many chose the option requiring less efforts: addition of a terminal server, a device that converts serial data for transmission via LAN or WAN.

Advantages:

Disadvantages:

All the RS-485-related advantages and disadvantages also apply.5. Network-enabled main controllers. The topology is nearly the same as described in the second and third paragraphs. The same advantages and disadvantages apply, but the on-board network interface offers a couple of valuable improvements. Transmission of configuration and user data to the main controllers is faster, and may be done in parallel. This makes the system more responsive, and does not interrupt normal operations. No special hardware is required in order to achieve redundant host PC setup: in the case that the primary host PC fails, the secondary host PC may start polling network controllers. The disadvantages introduced by terminal servers (listed in the fourth paragraph) are also eliminated. 6. IP controllers. Controllers are connected to a host PC via Ethernet LAN or WAN.

Advantages:

Disadvantages:

7. IP readers. Readers are connected to a host PC via Ethernet LAN or WAN.

Advantages:

Disadvantages:

The advantages and disadvantages of IP controllers apply to the IP readers as well.

Security risks

The most common security risk of intrusion through an access control system is by simply following a legitimate user through a door, and this is referred to as tailgating. Often the legitimate user will hold the door for the intruder. This risk can be minimized through security awareness training of the user population or more active means such as turnstiles. In very high-security applications this risk is minimized by using a sally port, sometimes called a security vestibule or mantrap, where operator intervention is required presumably to assure valid identification.[15]

The second most common risk is from levering a door open. This is relatively difficult on properly secured doors with strikes or high holding force magnetic locks. Fully implemented access control systems include forced door monitoring alarms. These vary in effectiveness, usually failing from high false positive alarms, poor database configuration, or lack of active intrusion monitoring. Most newer access control systems incorporate some type of door prop alarm to inform system administrators of a door left open longer than a specified length of time.[16] [17] [18]

The third most common security risk is natural disasters. In order to mitigate risk from natural disasters, the structure of the building, down to the quality of the network and computer equipment vital. From an organizational perspective, the leadership will need to adopt and implement an All Hazards Plan, or Incident Response Plan. The highlights of any incident plan determined by the National Incident Management System must include Pre-incident planning, during incident actions, disaster recovery, and after-action review.[19]

Similar to levering is crashing through cheap partition walls. In shared tenant spaces, the divisional wall is a vulnerability. A vulnerability along the same lines is the breaking of sidelights.

Spoofing locking hardware is fairly simple and more elegant than levering. A strong magnet can operate the solenoid controlling bolts in electric locking hardware. Motor locks, more prevalent in Europe than in the US, are also susceptible to this attack using a doughnut-shaped magnet. It is also possible to manipulate the power to the lock either by removing or adding current, although most Access Control systems incorporate battery back-up systems and the locks are almost always located on the secure side of the door.

Access cards themselves have proven vulnerable to sophisticated attacks. Enterprising hackers have built portable readers that capture the card number from a user's proximity card. The hacker simply walks by the user, reads the card, and then presents the number to a reader securing the door. This is possible because card numbers are sent in the clear, no encryption being used. To counter this, dual authentication methods, such as a card plus a PIN should always be used.

Many access control credentials unique serial numbers are programmed in sequential order during manufacturing. Known as a sequential attack, if an intruder has a credential once used in the system they can simply increment or decrement the serial number until they find a credential that is currently authorized in the system. Ordering credentials with random unique serial numbers is recommended to counter this threat.[20]

Finally, most electric locking hardware still has mechanical keys as a fail-over. Mechanical key locks are vulnerable to bumping.[21]

The need-to-know principle

The need to know principle can be enforced with user access controls and authorization procedures and its objective is to ensure that only authorized individuals gain access to information or systems necessary to undertake their duties.

Computer security

In computer security, general access control includes authentication, authorization, and audit. A more narrow definition of access control would cover only access approval, whereby the system makes a decision to grant or reject an access request from an already authenticated subject, based on what the subject is authorized to access. Authentication and access control are often combined into a single operation, so that access is approved based on successful authentication, or based on an anonymous access token. Authentication methods and tokens include passwords, biometric analysis, physical keys, electronic keys and devices, hidden paths, social barriers, and monitoring by humans and automated systems.

In any access-control model, the entities that can perform actions on the system are called subjects, and the entities representing resources to which access may need to be controlled are called objects (see also Access Control Matrix). Subjects and objects should both be considered as software entities, rather than as human users: any human users can only have an effect on the system via the software entities that they control.

Although some systems equate subjects with user IDs, so that all processes started by a user by default have the same authority, this level of control is not fine-grained enough to satisfy the principle of least privilege, and arguably is responsible for the prevalence of malware in such systems (see computer insecurity).

In some models, for example the object-capability model, any software entity can potentially act as both subject and object.

, access-control models tend to fall into one of two classes: those based on capabilities and those based on access control lists (ACLs).

Both capability-based and ACL-based models have mechanisms to allow access rights to be granted to all members of a group of subjects (often the group is itself modeled as a subject).

Access control systems provide the essential services of authorization, identification and authentication (I&A), access approval, and accountability where:[22]

Access control models

Access to accounts can be enforced through many types of controls.[23]

  1. Attribute-based Access Control (ABAC)
    An access control paradigm whereby access rights are granted to users through the use of policies which evaluate attributes (user attributes, resource attributes and environment conditions)[24]
  2. Discretionary Access Control (DAC)
    In DAC, the data owner determines who can access specific resources. For example, a system administrator may create a hierarchy of files to be accessed based on certain permissions.
  3. Graph-based Access Control (GBAC)
    Compared to other approaches like RBAC or ABAC, the main difference is that in GBAC access rights are defined using an organizational query language instead of total enumeration.
  4. History-Based Access Control (HBAC)
    Access is granted or declined based on the real-time evaluation of a history of activities of the inquiring party, e.g. behavior, time between requests, content of requests.[25] For example, the access to a certain service or data source can be granted or declined on the personal behavior, e.g. the request interval exceeds one query per second.
  5. History-of-Presence Based Access Control (HPBAC)
    Access control to resources is defined in terms of presence policies that need to be satisfied by presence records stored by the requestor. Policies are usually written in terms of frequency, spread and regularity. An example policy would be "The requestor has made k separate visitations, all within last week, and no two consecutive visitations are apart by more than T hours."[26]
  6. Identity-Based Access Control (IBAC)
    Using this network administrators can more effectively manage activity and access based on individual needs.
  7. Lattice-Based Access Control (LBAC)
    A lattice is used to define the levels of security that an object may have and that a subject may have access to. The subject is only allowed to access an object if the security level of the subject is greater than or equal to that of the object.
  8. Mandatory Access Control (MAC)
    In MAC, users do not have much freedom to determine who has access to their files. For example, security clearance of users and classification of data (as confidential, secret or top secret) are used as security labels to define the level of trust.
  9. Organization-Based Access Control (OrBAC)
    OrBAC model allows the policy designer to define a security policy independently of the implementation[27]
  10. Role-Based Access Control (RBAC)
    RBAC allows access based on the job title. RBAC largely eliminates discretion when providing access to objects. For example, a human resources specialist should not have permissions to create network accounts; this should be a role reserved for network administrators.
  11. Rule-Based Access Control (RAC)
    RAC method, also referred to as Rule-Based Role-Based Access Control (RB-RBAC), is largely context based. Example of this would be allowing students to use labs only during a certain time of day; it is the combination of students' RBAC-based information system access control with the time-based lab access rules.
  12. Responsibility Based Access Control
    Information is accessed based on the responsibilities assigned to an actor or a business role[28]

Telecommunications

In telecommunications, the term access control is defined in U.S. Federal Standard 1037C[29] with the following meanings:

  1. A service feature or technique used to permit or deny use of the components of a communication system.
  2. A technique used to define or restrict the rights of individuals or application programs to obtain data from, or place data onto, a storage device.
  3. The definition or restriction of the rights of individuals or application programs to obtain data from, or place data into, a storage device.
  4. The process of limiting access to the resources of an AIS (Automated Information System) to authorized users, programs, processes, or other systems.
  5. That function performed by the resource controller that allocates system resources to satisfy user requests.

This definition depends on several other technical terms from Federal Standard 1037C.

Attribute accessors

Special public member methods – accessors (aka getters) and mutator methods (often called setters) are used to control changes to class variables in order to prevent unauthorized access and data corruption.

Public policy

In public policy, access control to restrict access to systems ("authorization") or to track or monitor behavior within systems ("accountability") is an implementation feature of using trusted systems for security or social control.

See also

References

Further reading

External links

Notes and References

  1. Bertino . Elisa . 2011 . Access Control for Databases: Concepts and Systems . Foundations and Trends in Databases . 8 . 1–2 . 1–148.
  2. Ouaddah . Aafaf . Mousannif . Hajar . Abou Elkalam . Anas . Ait Ouahman . Abdellah . 2017-01-15 . Access control in the Internet of Things: Big challenges and new opportunities . Computer Networks . 112 . 237–262 . 10.1016/j.comnet.2016.11.007 . 1389-1286.
  3. Eugene Schultz. E.. 2007. Risks due to convergence of physical security systems and information technology environments. Information Security Technical Report. 12. 2. 80–84. 10.1016/j.istr.2007.06.001.
  4. Web site: The study of business opportunities and value add of NFC applications in security. Niemelä. Harri. 2011. theseus.fi. en. 22 March 2019.
  5. Book: Security and access control using biometric technologies . Course Technology . 2010 . Newman, Robert . Boston, Mass. . 978-1-4354-9667-5 . 535966830.
  6. Web site: Authentication in an Internet Banking Environment . Federal Financial Institutions Examination Council . 2008 . 31 December 2009 . live . https://web.archive.org/web/20100505203410/http://www.ffiec.gov/pdf/authentication_guidance.pdf . 5 May 2010 .
  7. News: 14 April 2014. MicroStrategy's office of the future includes mobile identity and cybersecurity. Washington Post. live. 30 March 2014. https://web.archive.org/web/20140216093132/http://www.washingtonpost.com/business/capitalbusiness/microstrategys-office-of-the-future-includes-mobile-identity-and-cybersecurity/2013/04/13/eb82e074-a1e3-11e2-be47-b44febada3a8_story.html. 16 February 2014.
  8. Web site: 16 September 2013. iPhone 5S: A Biometrics Turning Point?. live. https://web.archive.org/web/20150911223315/http://www.bankinfosecurity.com/iphone-5s-biometrics-turning-point-a-6065/op-1. 11 September 2015. 30 March 2014. BankInfoSecurity.com.
  9. Web site: 25 September 2013. NFC access control: cool and coming, but not close. live. https://web.archive.org/web/20140406155040/http://www.securitysystemsnews.com/article/nfc-access-control-cool-and-coming-not-close. 6 April 2014. 30 March 2014. Security Systems News.
  10. Web site: 11 June 2012. Ditch Those Tacky Key Chains: Easy Access with EC Key. dead. https://web.archive.org/web/20140407101653/http://www.wirelessdesignmag.com/blogs/2012/06/ditch-those-tacky-key-chains-easy-access-ec-key. 7 April 2014. 31 March 2014. Wireless Design and Development.
  11. Web site: 26 November 2013. Kisi And KeyMe, Two Smart Phone Apps, Might Make House Keys Obsolete. live. https://web.archive.org/web/20150311201754/http://www.huffingtonpost.com/2013/11/26/house-keys-extinct_n_4339682.html. 11 March 2015. The Huffington Post.
  12. Web site: Designing Access Control Guide. Rhodes. Brian. 2019. ipvm.com. en. 1 October 2019.
  13. News: Opening new doors with IP access control – Secure Insights. 16 March 2018. Secure Insights. 20 June 2018. en-US.
  14. Web site: The Evolution of Access Control. isonas.com. 26 September 2019.
  15. Morse. W. D.. 1998-08-01. Physical security of cut-and-cover underground facilities. 656762. English.
  16. Book: Norman, Thomas L. . Integrated security systems design : a complete reference for building enterprise-wide digital security systems . 2014 . 978-0-12-800193-6 . 2nd . Oxford [England] . 891396744.
  17. Book: Davies, Sandi J. . The professional protection officer : practical security strategies and emerging trends . 2019 . Lawrence J. Fennelly . 978-0-12-817749-5 . 2nd . Amsterdam . 166–167 . 1131862780.
  18. Book: Fennelly, Lawrence J. . Handbook of loss prevention and crime prevention . 2019 . Lawrence J. Fennelly . 978-0-12-817273-5 . 6th . Amsterdam . 239 . 1144727242.
  19. Web site: Incident Command System :: NIMS Online :: Serving the National Incident Management System (NIMS) Community. . 18 March 2007 . 6 March 2016 . dead . https://web.archive.org/web/20070318154341/http://www.nimsonline.com/nims_3_04/incident_command_system.htm . 18 March 2007 .
  20. Web site: Smart access control policies for residential & commercial buildings. 11 September 2017. live. https://web.archive.org/web/20170704011005/https://www.clonemykey.com/blog/smart-access-control-polices-for-residential-commercial-buildings/. 4 July 2017.
  21. Book: Graham Pulford. High-Security Mechanical Locks: An Encyclopedic Reference. 17 October 2007. Butterworth-Heinemann. 978-0-08-055586-7. 76–.
  22. Book: Benantar . M . Access Control Systems: Security, Identity Management and Trust Models . 2010 . Springer . United Kingdom . 9781441934734 . 262.
  23. Web site: Cybersecurity: Access Control. 4 February 2014. 11 September 2017.
  24. Web site: 2014 . SP 800-162, Guide to Attribute Based Access Control (ABAC) Definition and Considerations . NIST . 8 December 2015 . dead . https://web.archive.org/web/20160305222004/http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf . 5 March 2016 .
  25. Book: Schapranow, Matthieu-P. . 2014 . Real-time Security Extensions for EPCglobal Networks . Springer . 978-3-642-36342-9.
  26. Book: Pereira . Henrique G. G. . Fong . Philip W. L. . Computer Security – ESORICS 2019 . SEPD: An Access Control Model for Resource Sharing in an IoT Environment . 11736 . 2019 . 195–216 . 10.1007/978-3-030-29962-0_10 . Springer International Publishing . en. Lecture Notes in Computer Science . 978-3-030-29961-3 . 202579712 .
  27. Web site: OrBAC: Organization Based Access Control – The official OrBAC model website. orbac.org. 11 September 2017. dead. https://web.archive.org/web/20170610205017/http://orbac.org/. 10 June 2017.
  28. Web site: Feltus . Christophe . Petit . Michaël . Sloman . Morris . Enhancement of Business IT Alignment by Including Responsibility Components in RBAC . live . https://web.archive.org/web/20160304063613/http://ceur-ws.org/Vol-599/BUISTAL2010_Paper5.pdf . 4 March 2016 . 18 July 2014.
  29. Web site: FED-STD-1037C . dead . https://web.archive.org/web/20070508200727/http://www.its.bldrdoc.gov/fs-1037/other/a.pdf . 8 May 2007 . 23 January 2007.