ALGOL 60 explained

ALGOL 60
Paradigms:procedural, imperative, structured
Family:ALGOL
Designers:Backus, Bauer, Green, Katz, McCarthy, Naur, Perlis, Rutishauser, Samelson, van Wijngaarden, Vauquois, Wegstein, Woodger
Typing:Static, strong
Scope:Lexical
Influenced By:ALGOL 58
Influenced:Most subsequent imperative languages (so-called ALGOL-like languages), e.g., PL/I, Simula, CPL, Pascal, Ada, C

ALGOL 60 (short for Algorithmic Language 1960) is a member of the ALGOL family of computer programming languages. It followed on from ALGOL 58 which had introduced code blocks and the begin and end pairs for delimiting them, representing a key advance in the rise of structured programming. ALGOL 60 was one of the first languages implementing function definitions (that could be invoked recursively). ALGOL 60 function definitions could be nested within one another (which was first introduced by any programming language), with lexical scope. It gave rise to many other languages, including CPL, PL/I, Simula, BCPL, B, Pascal, and C. Practically every computer of the era had a systems programming language based on ALGOL 60 concepts.

Niklaus Wirth based his own ALGOL W on ALGOL 60 before moving to develop Pascal. Algol-W was intended to be the next generation ALGOL but the ALGOL 68 committee decided on a design that was more complex and advanced rather than a cleaned simplified ALGOL 60. The official ALGOL versions are named after the year they were first published. ALGOL 68 is substantially different from ALGOL 60 and was criticised partially for being so, so that in general "ALGOL" refers to dialects of ALGOL 60.

Standardization

ALGOL 60 – with COBOL – were the first languages to seek standardization.

History

ALGOL 60 was used mostly by research computer scientists in the United States and in Europe. Its use in commercial applications was hindered by the absence of standard input/output facilities in its description and the lack of interest in the language by large computer vendors. ALGOL 60 did however become the standard for the publication of algorithms and had a profound effect on future language development.

John Backus developed the Backus normal form method of describing programming languages specifically for ALGOL 58. It was revised and expanded by Peter Naur for ALGOL 60, and at Donald Knuth's suggestion renamed Backus–Naur form.[1]

Peter Naur: "As editor of the ALGOL Bulletin I was drawn into the international discussions of the language and was selected to be member of the European language design group in November 1959. In this capacity I was the editor of the ALGOL 60 report, produced as the result of the ALGOL 60 meeting in Paris in January 1960."[2]

The following people attended the meeting in Paris (from January 11 to 16):

Alan Perlis gave a vivid description of the meeting: "The meetings were exhausting, interminable, and exhilarating. One became aggravated when one's good ideas were discarded along with the bad ones of others. Nevertheless, diligence persisted during the entire period. The chemistry of the 13 was excellent."

The language originally did not include recursion. It was inserted into the specification at the last minute, against the wishes of some of the committee.[3]

ALGOL 60 inspired many languages that followed it. Tony Hoare remarked: "Here is a language so far ahead of its time that it was not only an improvement on its predecessors but also on nearly all its successors."[4] [5]

ALGOL 60 implementations timeline

To date there have been at least 70 augmentations, extensions, derivations and sublanguages of ALGOL 60.[6]

NameYearAuthorStateDescriptionTarget CPU
X1 ALGOL 60 August 1960[7] First implementation of ALGOL 60[8] Electrologica X1
Algol 1960[9] Edgar T. Irons ALGOL 60
Burroughs Algol
(Several variants)
1961 Burroughs Corporation (with participation by Hoare, Dijkstra, and others) Basis of the Burroughs (and now Unisys MCP based) computers Burroughs Large Systems
and midrange systems
1961 Simula was originally contracted as a simulation extension of the Case ALGOL UNIVAC 1107
1961 For ODIN time-sharing system PDP-1
1961 ALGOL 60 DASK at Regnecentralen
1962 ALGOL 60 SMIL at Lund University
1962 ALGOL 60 GIER at Regnecentralen
Dartmouth ALGOL 30[10] 1962 ALGOL 60 LGP-30
Alcor Mainz 2002 1962 Ursula Hill-Samelson, Hans Langmaack Siemens 2002
ALCOR-Illinois 70901962
[11] [12]
Manfred Paul, Hans Rüdiger Wiehle, David Gries, and Rudolf Bayer United States, ALGOL 60
Implemented at Illinois and the TH München, 1962-1964
IBM 7090
1962
1962 Discussed in his 1980 Turing Award lectureElliott 803 & the Elliott 503
ALGOL 60 1962 Roland Strobel[13] Zeiss-Rechenautomat ZRA 1
ALGOL 601962Bernard Vauquois, Louis Bolliet[14] FranceInstitut d'Informatique et Mathématiques Appliquées de Grenoble (IMAG) and Compagnie des Machines BullBull Gamma 60
Algol Translator 1962 Staatsbedrijf der Posterijen, Telegrafie en Telefonie ZEBRA
1963 English Electric Company KDF9
SCALP[15] 1963 Self-Contained ALgol Processor for a subset of ALGOL 60 LGP-30
1963 A test of the META II compiler compiler
FP6000 Algol 1963
1964 Brian Randell and Lawford John Russell Atomic Power Division of English Electric Company. Precursor to Ferranti Pegasus, National Physical Laboratories ACE and English Electric DEUCE implementations English Electric Company KDF9
ALGOL 60 1964 Jean-Claude Boussard[16] IBM 7090
ALGOL-GENIUS 1964 Börje Langefors Added COBOL-inspired data records and I/O Datasaab D-21
ALGOL 60 1965 [17] Centre de calcul de la Faculté des Sciences de Nancy IBM 1620
Dartmouth ALGOL 1965 Stephen J. Garland, Sarr Blumson, Ron Martin ALGOL 60 Dartmouth Time-Sharing System for the GE 235
1965 UNIVAC
ALGOL 60 1965[18] F.E.J. Kruseman Aretz MC compiler for the EL-X8 Electrologica X8
ALGEK1965 АЛГЭК, based on ALGOL 60 and COBOL support, for economical tasks
1966 publ. A. Viil, M Kotli & M. Rakhendi, Minsk-22
1967 GAMS group (ГАМС, группа автоматизации программирования для машин среднего класса), cooperation of Comecon Academies of Science Minsk-22, later ES EVM, BESM
1967 Polish ZAM computer
Chinese Algol1972 Chinese characters, expressed via the Symbol system
1972 DG Eclipse family of Computers
NASE1990Erik Schoenfelder GermanyInterpreter Linux and MS Windows
MARST 2000Andrew MakhorinALGOL 60 to C translatorAll CPUs supported by the GNU Compiler Collection; MARST is part of the GNU project

The Burroughs dialects included special system programming dialects such as ESPOL and NEWP.

Properties

ALGOL 60 as officially defined had no I/O facilities; implementations defined their own in ways that were rarely compatible with each other. In contrast, ALGOL 68 offered an extensive library of transput (ALGOL 68 parlance for input/output) facilities.

ALGOL 60 provided two evaluation strategies for parameter passing: the common call-by-value, and call-by-name. The procedure declaration specified, for each formal parameter, which was to be used: value specified for call-by-value, and omitted for call-by-name. Call-by-name has certain effects in contrast to call-by-reference. For example, without specifying the parameters as value or reference, it is impossible to develop a procedure that will swap the values of two parameters if the actual parameters that are passed in are an integer variable and an array that is indexed by that same integer variable.[19] Think of passing a pointer to swap(i, A[i]) in to a function. Now that every time swap is referenced, it's reevaluated. Say i := 1 and A[i] := 2, so every time swap is referenced it'll return the other combination of the values ([1,2], [2,1], [1,2] and so on). A similar situation occurs with a random function passed as actual argument.

Call-by-name is known by many compiler designers for the interesting "thunks" that are used to implement it. Donald Knuth devised the "man or boy test" to separate compilers that correctly implemented "recursion and non-local references." This test contains an example of call-by-name.

ALGOL 60 Reserved words and restricted identifiers

There are 35 such reserved words in the standard Burroughs Large Systems sub-language:

There are 71 such restricted identifiers in the standard Burroughs Large Systems sub-language:

and also the names of all the intrinsic functions.

Standard operators

PriorityOperator
first arithmetic first ↑ (power)
second ×, / (real), ÷ (integer)
third +, -
second <, ≤, =, ≥, >, ≠
third ¬ (not)
fourth ∧ (and)
fifth ∨ (or)
sixth ⊃ (implication)
seventh ≡ (equivalence)

Examples and portability issues

Code sample comparisons

ALGOL 60

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k); value n, m; array a; integer n, m, i, k; real y; comment The absolute greatest element of the matrix a, of size n by m, is copied to y, and the subscripts of this element to i and k; begin integer p, q; y := 0; i := k := 1; for p := 1 step 1 until n do for q := 1 step 1 until m do if abs(a[p, q]) > y then begin y := abs(a[p, q]); i := p; k := q end end Absmax

Implementations differ in how the text in bold must be written. The word 'INTEGER', including the quotation marks, must be used in some implementations in place of integer, above, thereby designating it as a special keyword.

Following is an example of how to produce a table using Elliott 803 ALGOL:[20]

FLOATING POINT ALGOL TEST' BEGIN REAL A,B,C,D' READ D' FOR A:= 0.0 STEP D UNTIL 6.3 DO BEGIN PRINT,££L??' B := SIN(A)' C := COS(A)' PRINT,,,A,B,C' END' END'

ALGOL 60 family

Since ALGOL 60 had no I/O facilities, there is no portable hello world program in ALGOL. The following program could (and still will) compile and run on an ALGOL implementation for a Unisys A-Series mainframe, and is a straightforward simplification of code taken from The Language Guide[21] at the University of Michigan-Dearborn Computer and InformationScience Department Hello world! ALGOL Example Program page.[22]

BEGIN FILE F(KIND=REMOTE); EBCDIC ARRAY E[0:11]; REPLACE E BY "HELLO WORLD!"; WRITE(F, *, E); END.

Where * etc. represented a format specification as used in FORTRAN, e.g.[23]

A simpler program using an inline format:An even simpler program using the Display statement:

An alternative example, using Elliott Algol I/O is as follows. Elliott Algol used different characters for "open-string-quote" and "close-string-quote", represented here by and .Here's a version for the Elliott 803 Algol (A104) The standard Elliott 803 used 5-hole paper tape and thus only had upper case. The code lacked any quote characters so £ (pound sign) was used for open quote and ? (question mark) for close quote. Special sequences were placed in double quotes (e.g., £L?? produced a new line on the teleprinter).

HIFOLKS' BEGIN PRINT £HELLO WORLD£L??' END'

The ICT 1900 series Algol I/O version allowed input from paper tape or punched card. Paper tape 'full' mode allowed lower case. Output was to a line printer. Note use of '(', ')', and %.[24] 'PROGRAM' (HELLO) 'BEGIN' 'COMMENT' OPEN QUOTE IS '(', CLOSE IS ')', PRINTABLE SPACE HAS TO BE WRITTEN AS % BECAUSE SPACES ARE IGNORED; WRITE TEXT('('HELLO%WORLD')'); 'END' 'FINISH'

LEAP

LEAP is an extension to the ALGOL 60 programming language which provides an associative memory of triples. The three items in a triple denote the association that an Attribute of an Object has a specific Value. LEAP was created by Jerome Feldman (University of California Berkeley) and Paul Rovner (MIT Lincoln Lab) in 1967. LEAP was also implemented in SAIL.

See also

Further reading

External links

Notes and References

  1. Knuth . Donald E. . Donald Knuth . Backus normal Form vs Backus Naur Form . Communications of the ACM . 7 . 12 . 735–6 . December 1964 . 10.1145/355588.365140 . 47537431. free .
  2. http://awards.acm.org/citation.cfm?id=1024454&srt=all&aw=140&ao=AMTURING&yr=2005 ACM Award Citation / Peter Naur
  3. Web site: How recursion got into programming: a tale of intrigue, betrayal, and advanced programming-language semantics. Maarten. van Emden. 2014. A Programmer's Place.
  4. Web site: Hoare . C.A.R. . Tony Hoare . Hints on Programming Language Design . December 1973 . 27. (This statement is sometimes erroneously attributed to Edsger W. Dijkstra, also involved in implementing the first ALGOL 60 compiler.)
  5. Web site: Abelson . Hal . Hal Abelson . Dybvig . R. K. . R. Kent Dybvig . Rees . Jonathan . Clinger . William . Revised(3) Report on the Algorithmic Language Scheme (Dedicated to the Memory of ALGOL 60). 2009-10-20. etal.
  6. http://hopl.murdoch.edu.au/showlanguage.prx?exp=1807 The Encyclopedia of Computer Languages
  7. Dijkstra's Rallying Cry for Generalization: the Advent of the Recursive Procedure, late 1950s – early 1960s. Daylight . E. G.. The Computer Journal. 54. 11. 2011. 1756–1772. 10.1093/comjnl/bxr002.
  8. Book: Kruseman Aretz . F.E.J. . The Dijkstra-Zonneveld ALGOL 60 compiler for the Electrologica X1 . Software Engineering . History of Computer Science . Centrum Wiskunde & Informatica . Amsterdam . 30 June 2003 . 1386-3711 . http://www.cwi.nl/ftp/CWIreports/SEN/SEN-N0301.pdf . https://web.archive.org/web/20040117172550/http://ftp.cwi.nl/CWIreports/SEN/SEN-N0301.pdf . 2004-01-17 . dead.
  9. [Edgar T. Irons|Irons, Edgar T.]
  10. Book: Kurtz, Thomas E. . 1978 . BASIC . History of programming languages . 10.1145/800025.1198404 . free . 515–537 . 0127450408.
  11. Gries . D. . Paul . M. . Wiehle . H. R . 1965 . Some techniques used in the ALCOR Illinois 7090 . 10.1145/365474.365511 . Communications of the ACM . 8 . 8 . 496–500 . 18365024. free .
  12. Bayer . R. . Gries . D. . Paul . M. . Wiehle . H. R. . 1967 . The ALCOR Illinois 7090/7094 post mortem dump . Communications of the ACM . 10 . 12 . 804–808 . 10.1145/363848.363866 . 3783605 . free.
  13. http://www.fv-tsd.de/index.php?id=42 Rechenautomaten mit Trommelspeicher
  14. Mounier-Kuhn . Pierre . 2014 . Algol in France: From Universal Project to Embedded Culture . IEEE Annals of the History of Computing . 36 . 4 . 6 . 1058-6180.
  15. Kurtz, op. cit., page 517.
  16. Etude et réalisation d'un compilateur Algol60 sur calculateur éléctronique du type IBM 7090/94 et 7040/44 . Design and implementation of a compiler Algol60 on electronic calculator IBM 7090/94 and 7040/44 . Boussard . Jean-Claude . June 1964 . Université Joseph-Fourier - Grenoble I . PhD . fr.
  17. Description d'un compilateur ALGOL. Claude Pair. 27 April 1965 . European Région 1620 Users Group . IBM.
  18. Book: Kruseman Aretz . F.E.J. . An Algol 60 compiler in Algol 60 . Mathematical Centre Tracts . Mathematisch Centrum . Amsterdam . 1973.
  19. Book: Aho . Alfred V. . Alfred V. Aho . Sethi . Ravi . Ravi Sethi . Ullman . Jeffrey D. . Jeffrey Ullman . 1986 . Compilers: Principles, Techniques, and Tools . 1st . Addison-Wesley . 978-0-201-10194-2 . Dragon Book (computer science)., Section 7.5, and references therein
  20. http://www.billp.org/ccs/A104/ "803 ALGOL"
  21. Web site: The ALGOL Programming Language . www.engin.umd.umich.edu . 11 January 2022 . https://web.archive.org/web/20100210185248/http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.html . 10 February 2010 . dead.
  22. Web site: Hello world! Example Program . www.engin.umd.umich.edu . 11 January 2022 . https://web.archive.org/web/20100204112923/http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/hworld.html . 4 February 2010 . dead.
  23. [Fortran#"Hello, World!" example]
  24. Web site: ICL 1900 series: Algol Language. ICL Technical Publication 3340. 1965.