A one-dimensional space (1D space) is a mathematical space in which location can be specified with a single coordinate. An example is the number line, each point of which is described by a single real number.[1] Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve.In physical space, a 1D subspace is called a "linear dimension" (rectilinear or curvilinear), with units of length (e.g., metre).
K
K,
P1(K),
C,
P1(C)
C
For every eigenvector of a linear transformation T on a vector space V, there is a one-dimensional space A ⊂ V generated by the eigenvector such that T(A) = A, that is, A is an invariant set under the action of T.[2]
In Lie theory, a one-dimensional subspace of a Lie algebra is mapped to a one-parameter group under the Lie group–Lie algebra correspondence.[3]
More generally, a ring is a length-one module over itself. Similarly, the projective line over a ring is a one-dimensional space over the ring. In case the ring is an algebra over a field, these spaces are one-dimensional with respect to the algebra, even if the algebra is of higher dimensionality.
See main article: Coordinate system.
One dimensional coordinate systems include the number line.