Α-Pyrrolidinopropiophenone Explained

α-Pyrrolidinopropiophenone (α-PPP), is a stimulant drug. It is similar in structure to the appetite suppressant diethylpropion and has analogous effects in animals. Little is known about this compound, but it has been detected by laboratories in Germany as an ingredient in "ecstasy" tablets seized by law enforcement authorities. This drug has been found to produce stimulant effects in animals and produces highly stimulating effects in humans, based on the experiences of the individuals who have tried it.[1] [2] Most of the individuals who have tried it prefer α-PVP to it, but prefer this drug over α-PVT. It is said to lack euphoria compared to α-PVP.

α-PPP is illegal in the UK under the blanket ban on substituted cathinones, and due to its structural similarity to illegal drugs such as methcathinone and pyrovalerone it might be considered a controlled substance analogue in some countries such as the US, Australia and New Zealand. Analogues of α-PPP such as pyrovalerone and MDPV have been more widely used and are presumed to be more potent and addictive than α-PPP itself. Structure-activity relationships of these drugs suggest that a variety of ring-substituted analogues are likely to be potential drugs of abuse,[3] and stimulant activity has been found for analogues with between 3 and 6 carbon atoms in the alkyl chain.[4] [5] It has been shown to have neurotoxic effects in animals.[6]

See also

Notes and References

  1. Staack RF, Maurer HH . Metabolism of designer drugs of abuse . Current Drug Metabolism . 6 . 3 . 259–74 . June 2005 . 15975043 . 10.2174/1389200054021825 .
  2. Springer D, Fritschi G, Maurer HH . Metabolism of the new designer drug alpha-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4'-methyl-alpha-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry . Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences . 796 . 2 . 253–66 . November 2003 . 14581066 . 10.1016/j.jchromb.2003.07.008 .
  3. Gannon BM, Galindo KI, Mesmin MP, Sulima A, Rice KC, Collins GT . Relative reinforcing effects of second-generation synthetic cathinones: Acquisition of self-administration and fixed ratio dose-response curves in rats . Neuropharmacology . 134 . Pt A . 28–35 . May 2018 . 28811192 . 5809320 . 10.1016/j.neuropharm.2017.08.018 .
  4. Maurer HH, Kraemer T, Springer D, Staack RF . Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis . Therapeutic Drug Monitoring . 26 . 2 . 127–31 . April 2004 . 15228152 . 10.1097/00007691-200404000-00007 . 9255084 .
  5. Meltzer PC, Butler D, Deschamps JR, Madras BK . 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors . Journal of Medicinal Chemistry . 49 . 4 . 1420–32 . February 2006 . 16480278 . 2602954 . 10.1021/jm050797a .
  6. Ray A, Chitre NM, Daphney CM, Blough BE, Canal CE, Murnane KS . Effects of the second-generation "bath salt" cathinone alpha-pyrrolidinopropiophenone (α-PPP) on behavior and monoamine neurochemistry in male mice . Psychopharmacology . 236 . 3 . 1107–1117 . March 2019 . 30276421 . 6443494 . 10.1007/s00213-018-5044-z .